Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/davidtvs/PyTorch-ENet
PyTorch implementation of ENet
https://github.com/davidtvs/PyTorch-ENet
camvid cityscape enet pytorch
Last synced: 2 months ago
JSON representation
PyTorch implementation of ENet
- Host: GitHub
- URL: https://github.com/davidtvs/PyTorch-ENet
- Owner: davidtvs
- License: mit
- Created: 2018-02-19T00:35:33.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2021-05-10T21:12:24.000Z (over 3 years ago)
- Last Synced: 2024-07-09T02:01:51.044Z (6 months ago)
- Topics: camvid, cityscape, enet, pytorch
- Language: Python
- Homepage:
- Size: 53 MB
- Stars: 374
- Watchers: 7
- Forks: 129
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# PyTorch-ENet
PyTorch (v1.1.0) implementation of [*ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation*](https://arxiv.org/abs/1606.02147), ported from the lua-torch implementation [ENet-training](https://github.com/e-lab/ENet-training) created by the authors.
This implementation has been tested on the CamVid and Cityscapes datasets. Currently, a pre-trained version of the model trained in CamVid and Cityscapes is available [here](https://github.com/davidtvs/PyTorch-ENet/tree/master/save).
| Dataset | Classes 1 | Input resolution | Batch size | Epochs | Mean IoU (%) | GPU memory (GiB) | Training time (hours)2 |
| :------------------------------------------------------------------: | :------------------: | :--------------: | :--------: | :----: | :---------------: | :--------------: | :-------------------------------: |
| [CamVid](http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/) | 11 | 480x360 | 10 | 300 | 52.13 | 4.2 | 1 |
| [Cityscapes](https://www.cityscapes-dataset.com/) | 19 | 1024x512 | 4 | 300 | 59.54 | 5.4 | 20 |1 When referring to the number of classes, the void/unlabeled class is always excluded.
2 These are just for reference. Implementation, datasets, and hardware changes can lead to very different results. Reference hardware: Nvidia GTX 1070 and an AMD Ryzen 5 3600 3.6GHz. You can also train for 100 epochs or so and get similar mean IoU (± 2%).
3 Test set.
4 Validation set.## Installation
### Local pip
1. Python 3 and pip
2. Set up a virtual environment (optional, but recommended)
3. Install dependencies using pip: `pip install -r requirements.txt`### Docker image
1. Build the image: `docker build -t enet .`
2. Run: `docker run -it --gpus all --ipc host enet`## Usage
Run [``main.py``](https://github.com/davidtvs/PyTorch-ENet/blob/master/main.py), the main script file used for training and/or testing the model. The following options are supported:
```
python main.py [-h] [--mode {train,test,full}] [--resume]
[--batch-size BATCH_SIZE] [--epochs EPOCHS]
[--learning-rate LEARNING_RATE] [--lr-decay LR_DECAY]
[--lr-decay-epochs LR_DECAY_EPOCHS]
[--weight-decay WEIGHT_DECAY] [--dataset {camvid,cityscapes}]
[--dataset-dir DATASET_DIR] [--height HEIGHT] [--width WIDTH]
[--weighing {enet,mfb,none}] [--with-unlabeled]
[--workers WORKERS] [--print-step] [--imshow-batch]
[--device DEVICE] [--name NAME] [--save-dir SAVE_DIR]
```For help on the optional arguments run: ``python main.py -h``
### Examples: Training
```
python main.py -m train --save-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/
```### Examples: Resuming training
```
python main.py -m train --resume True --save-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/
```### Examples: Testing
```
python main.py -m test --save-dir save/folder/ --name model_name --dataset name --dataset-dir path/root_directory/
```## Project structure
### Folders
- [``data``](https://github.com/davidtvs/PyTorch-ENet/tree/master/data): Contains instructions on how to download the datasets and the code that handles data loading.
- [``metric``](https://github.com/davidtvs/PyTorch-ENet/tree/master/metric): Evaluation-related metrics.
- [``models``](https://github.com/davidtvs/PyTorch-ENet/tree/master/models): ENet model definition.
- [``save``](https://github.com/davidtvs/PyTorch-ENet/tree/master/save): By default, ``main.py`` will save models in this folder. The pre-trained models can also be found here.### Files
- [``args.py``](https://github.com/davidtvs/PyTorch-ENet/blob/master/args.py): Contains all command-line options.
- [``main.py``](https://github.com/davidtvs/PyTorch-ENet/blob/master/main.py): Main script file used for training and/or testing the model.
- [``test.py``](https://github.com/davidtvs/PyTorch-ENet/blob/master/test.py): Defines the ``Test`` class which is responsible for testing the model.
- [``train.py``](https://github.com/davidtvs/PyTorch-ENet/blob/master/train.py): Defines the ``Train`` class which is responsible for training the model.
- [``transforms.py``](https://github.com/davidtvs/PyTorch-ENet/blob/master/transforms.py): Defines image transformations to convert an RGB image encoding classes to a ``torch.LongTensor`` and vice versa.