Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dbos-inc/durable-swarm
Augment Swarm with durable execution to help you build reliable and scalable multi-agent systems.
https://github.com/dbos-inc/durable-swarm
agentic-workflow ai dbos openai postgresql python serverless
Last synced: about 2 months ago
JSON representation
Augment Swarm with durable execution to help you build reliable and scalable multi-agent systems.
- Host: GitHub
- URL: https://github.com/dbos-inc/durable-swarm
- Owner: dbos-inc
- License: mit
- Created: 2024-10-15T15:57:52.000Z (2 months ago)
- Default Branch: main
- Last Pushed: 2024-10-21T20:44:57.000Z (2 months ago)
- Last Synced: 2024-10-22T07:56:21.153Z (2 months ago)
- Topics: agentic-workflow, ai, dbos, openai, postgresql, python, serverless
- Language: Python
- Homepage: https://docs.dbos.dev
- Size: 2.89 MB
- Stars: 45
- Watchers: 2
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![Durable Swarm Logo](assets/durable-swarm-banner.png)
# DurableSwarm: Reliable Multi-Agent Orchestration
This repository augments [OpenAI's Swarm](https://github.com/openai/swarm) with **durable execution** to help you build **reliable** multi-agent systems.
Durable Swarm is a drop-in replacement for Swarm that makes your agentic workflows **resilient to any failure**, so that if they are interrupted or restarted, they automatically resume from their last completed steps.
Under the hood, it uses [DBOS](https://github.com/dbos-inc/dbos-transact-py) to persist your agentic workflows' execution state (which workflows are currently executing and which steps they've completed) in a Postgres database.## Why Durable Execution?
As multi-agent workflows become more common, longer-running, and more interactive, it's important to make them **reliable**.
If an agent spends hours waiting for user inputs or processing complex workflows, it needs to be resilient to transient failures, such as server restarts.
However, reliable multi-agent orchestration isn't easy—it requires complex rearchitecting like routing agent communication through SQS or Kafka.Durable execution helps you write reliable agents while preserving the **ease of use** of a framework like Swarm.
The idea is to automatically persist the execution state of your Swarm workflow in a Postgres database.
That way, if your program is interrupted, it can automatically resume your agentic workflows from their last completed steps.## Making Swarm Durable
To add Durable Swarm to your project, simply create a `durable_swarm.py` file containing the following code:
```python
from swarm import Swarm
from dbos import DBOS, DBOSConfiguredInstanceDBOS()
@DBOS.dbos_class()
class DurableSwarm(Swarm, DBOSConfiguredInstance):
def __init__(self, client=None):
Swarm.__init__(self, client)
DBOSConfiguredInstance.__init__(self, "openai_client")@DBOS.step()
def get_chat_completion(self, *args, **kwargs):
return super().get_chat_completion(*args, **kwargs)@DBOS.step()
def handle_tool_calls(self, *args, **kwargs):
return super().handle_tool_calls(*args, **kwargs)@DBOS.workflow()
def run(self, *args, **kwargs):
return super().run(*args, **kwargs)DBOS.launch()
```Then use `DurableSwarm` instead of `Swarm` in your applications—it's a drop-in replacement.
Under the hood, this works by declaring Swarm's main loop to be a durably executed workflow and each chat completion or tool call to be a step in that workflow.
DBOS persists the input of a workflow and the outputs of its steps in a Postgres database.
Therefore, if your workflow is ever interrupted, DBOS can automatically resume it from the last completed step!## Getting Started
To get started, install [Swarm](https://github.com/openai/swarm/tree/main) and [DBOS](https://github.com/dbos-inc/dbos-transact-py) and initialize DBOS. Swarm requires Python >=3.10.
```
pip install dbos git+https://github.com/openai/swarm.git
dbos init --config
```You also need an OpenAI API key. You can obtain one [here](https://platform.openai.com/api-keys). Set it as an environment variable:
```
export OPENAI_API_KEY=
```To try Durable Swarm out, create `durable_swarm.py` as above then create a `main.py` file in the same directory containing this simple program:
```python
from swarm import Agent
from durable_swarm import DurableSwarmclient = DurableSwarm()
def transfer_to_agent_b():
return agent_bagent_a = Agent(
name="Agent A",
instructions="You are a helpful agent.",
functions=[transfer_to_agent_b],
)agent_b = Agent(
name="Agent B",
instructions="Only speak in Haikus.",
)response = client.run(
agent=agent_a,
messages=[{"role": "user", "content": "I want to talk to agent B."}],
)print(response.messages[-1]["content"])
```DBOS requires Postgres.
If you already have a Postgres server, modify `dbos-config.yaml` to configure its connection information.
Otherwise, we provide a [script](./start_postgres_docker.py) to start Postgres using Docker:```
export PGPASSWORD=swarm
python3 start_postgres_docker.py
```Finally, run your agents:
```
> python3 main.pyAgent B is here,
Ready to help you today,
What do you need, friend?
```## Converting Existing Apps to DurableSwarm
You can convert any existing Swarm app to DurableSwarm in three simple steps:
1. Install `dbos` and initialize it with `dbos init --config`.
2. Add [`durable_swarm.py`](durable_swarm.py) to your project.
3. Use `DurableSwarm` in place of `Swarm` in your application.> [!NOTE]
> DurableSwarm currently doesn't support streaming## Examples
We created an example app using Durable Swarm to build a durable refund agent that automatically recovers from interruptions while processing refunds.
Check it out [here](examples/reliable_refund/) or watch this GIF of the app in action:![Durable Swarm Demo](assets/demo.gif)
We also converted each of the original Swarm examples to DurableSwarm. Find them in `examples/` and learn more about each one in its README.
- [`basic`](examples/basic/): Simple examples of fundamentals like setup, function calling, handoffs, and context variables
- [`triage_agent`](examples/triage_agent/): Simple example of setting up a basic triage step to hand off to the right agent
- [`weather_agent`](examples/weather_agent/): Simple example of function calling
- [`airline`](examples/airline/): A multi-agent setup for handling different customer service requests in an airline context
- [`support_bot`](examples/support_bot/): A customer service bot which includes a user interface agent and a help center agent with several tools> [!NOTE]
> We didn't convert demos that aren't yet complete, like [`personal_shopper`](https://github.com/openai/swarm/issues/49).