Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dcavar/flair-json-nlp
Flair wrapper for JSON-NLP.
https://github.com/dcavar/flair-json-nlp
flair json natural-language-processing nlp
Last synced: about 2 months ago
JSON representation
Flair wrapper for JSON-NLP.
- Host: GitHub
- URL: https://github.com/dcavar/flair-json-nlp
- Owner: dcavar
- License: apache-2.0
- Created: 2019-03-26T21:15:36.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2020-05-18T17:43:41.000Z (over 4 years ago)
- Last Synced: 2024-10-13T22:36:04.280Z (3 months ago)
- Topics: flair, json, natural-language-processing, nlp
- Language: Python
- Homepage: https://nlp-lab.org/flairjsonnlp/
- Size: 30.3 KB
- Stars: 11
- Watchers: 5
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Flair JSON-NLP Wrapper
(C) 2019-2020 by [Damir Cavar]
Contributors to previous versions: [Oren Baldinger], [Maanvitha Gongalla], Anurag Kumar, Murali Kammili
Brought to you by the [NLP-Lab.org]!
## Introduction
[Flair] v 4.5 wrapper for [JSON-NLP]. [Flair] provides state-of-the-art embeddings, and tagging capabilities,
in particular, POS-tagging, NER, shallow syntax chunking, and semantic frame detection.## FlairPipeline
We provide a `FlairPipeline` class, with the following parameters for ease of use:
- `lang`: defaults to `en`. Different languages support different models, see the [Flair Docs] for details.
- `use_ontonotes`: defaults to `False`. Whether or not to use 4-class (True) or 12-class (False) NER tagging.
- `fast`: defaults to `True`. Whether or not to use the smaller, faster, but slightly less accurate versions of the models.
- `use_embeddings`: defaults to ''. Passing `default` will map to `glove,multi-forward,multi-backward`, the recommended stacked-embedding configuration.
- `char_embeddings`: defaults to `False`. Whether or not to include character-level embeddings.
- `bpe_size`: defaults to 0. If you want to include [Byte-Pair Encodings](https://nlp.h-its.org/bpemb/), set this value to 50, 100, 200, or 300. See more at [Flair Embeddings Docs](https://github.com/zalandoresearch/flair/blob/master/resources/docs/TUTORIAL_3_WORD_EMBEDDING.md).
- `pos`: defaults to `True`. Whether or not to include language-specific part-of-speech tags.
- `sentinment`: defaults to `True`. Whether or not to include sentiment analysis, if it is available for the given language.Tagging and Embedding models are downloaded automatically the first time they are called.
This may take a while depending on your internet connection.## Microservice
The [JSON-NLP] repository provides a Microservice class, with a pre-built implementation of [Flask]. To run it, execute:
python flairjsonnlp/server.py
Since `server.py` extends the [Flask] app, a WSGI file would contain:from flairjsonnlp.server import app as application
The microservice exposes the following URIs:
- /expressions
- /token_listThese URIs are shortcuts to disable the other components of the parse. In all cases, `tokenList` will be included in the `JSON-NLP` output. An example url is:
http://localhost:5000/expressions?text=I am a sentence
Text is provided to the microservice with the `text` parameter, via either `GET` or `POST`. If you pass `url` as a parameter, the microservice will scrape that url and process the text of the website.
The additional [Flair] parameters can be passed as parameters as well.
Here is an example `GET` call:
http://localhost:5000?lang=de&constituents=0&text=Ich bin ein Berliner.
[Damir Cavar]: http://damir.cavar.me/ "Damir Cavar"
[Oren Baldinger]: https://oren.baldinger.me/ "Oren Baldinger"
[Maanvitha Gongalla]: https://maanvithag.github.io/MaanvithaGongalla/ "Maanvitha Gongalla"
[NLP-Lab.org]: http://nlp-lab.org/ "NLP-Lab.org"
[JSON-NLP]: https://github.com/dcavar/JSON-NLP "JSON-NLP"
[Flair]: https://github.com/zalandoresearch/flair "Flair"
[spaCy]: https://spacy.io/ "spaCy"
[NLTK]: http://nltk.org/ "Natural Language Processing Toolkit"
[Polyglot]: https://github.com/aboSamoor/polyglot "Polyglot"
[Xrenner]: https://github.com/amir-zeldes/xrenner "Xrenner"
[CONLL-U]: https://universaldependencies.org/format.html "CONLL-U"
[Flask]: http://flask.pocoo.org/ "Flask"
[Flair Docs]: https://github.com/zalandoresearch/flair/tree/master/resources/docs "Flair Docs"