Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/decisionfacts/semantic-ai
An open source framework for Retrieval-Augmented System (RAG) uses semantic search helps to retrieve the expected results and generate human readable conversational response with the help of LLM (Large Language Model).
https://github.com/decisionfacts/semantic-ai
approximate-nearest-neighbor-search deep-neural-networks document-parser docx fastapi inference-api llama2 llm machine-learning ocr openai openai-api pdf rag retrieval-augmented-generation semantic-search vector-database
Last synced: about 2 months ago
JSON representation
An open source framework for Retrieval-Augmented System (RAG) uses semantic search helps to retrieve the expected results and generate human readable conversational response with the help of LLM (Large Language Model).
- Host: GitHub
- URL: https://github.com/decisionfacts/semantic-ai
- Owner: decisionfacts
- License: apache-2.0
- Created: 2023-10-09T08:28:31.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-07-19T11:38:45.000Z (6 months ago)
- Last Synced: 2024-10-30T06:24:10.706Z (3 months ago)
- Topics: approximate-nearest-neighbor-search, deep-neural-networks, document-parser, docx, fastapi, inference-api, llama2, llm, machine-learning, ocr, openai, openai-api, pdf, rag, retrieval-augmented-generation, semantic-search, vector-database
- Language: Python
- Homepage: https://docs-semantic-ai.decisionfacts.ai/
- Size: 4.53 MB
- Stars: 18
- Watchers: 3
- Forks: 1
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![Semantic AI Logo](https://github.com/decisionfacts/semantic-ai/blob/master/docs/source/_static/images/createLLM.png?raw=True)
# Semantic AI Lib[![Python version](https://img.shields.io/badge/python-3.10-green)](https://img.shields.io/badge/python-3.10-green)[![PyPI version](https://badge.fury.io/py/semantic-ai.svg)](https://badge.fury.io/py/semantic-ai)[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
An open-source framework for Retrieval-Augmented System (RAG) uses semantic search to retrieve the expected results and generate human-readable conversational responses with the help of LLM (Large Language Model).
**Semantic AI Library Documentation [Docs here](https://docs-semantic-ai.decisionfacts.ai/)**
## Requirements
Python 3.10+ asyncio
## Installation
```shell
# Using pip
$ python -m pip install semantic-ai# Manual install
$ python -m pip install .
```
# Set the environment variable
Set the credentials in .env file. Only give the credential for an one connector, an one indexer and an one llm model config. other fields put as empty
```shell
# Default
FILE_DOWNLOAD_DIR_PATH= # default directory name 'download_file_dir'
EXTRACTED_DIR_PATH= # default directory name 'extracted_dir'# Connector (SharePoint, S3, GCP Bucket, GDrive, Confluence etc.,)
CONNECTOR_TYPE="connector_name" # sharepoint
SHAREPOINT_CLIENT_ID="client_id"
SHAREPOINT_CLIENT_SECRET="client_secret"
SHAREPOINT_TENANT_ID="tenant_id"
SHAREPOINT_HOST_NAME='.sharepoint.com'
SHAREPOINT_SCOPE='https://graph.microsoft.com/.default'
SHAREPOINT_SITE_ID="site_id"
SHAREPOINT_DRIVE_ID="drive_id"
SHAREPOINT_FOLDER_URL="folder_url" # /My_folder/child_folder/# Indexer
INDEXER_TYPE="" # elasticsearch, qdrant, opensearch
ELASTICSEARCH_URL="" # give valid url
ELASTICSEARCH_USER="" # give valid user
ELASTICSEARCH_PASSWORD="" # give valid password
ELASTICSEARCH_INDEX_NAME=""
ELASTICSEARCH_SSL_VERIFY="" # True or False# Qdrant
QDRANT_URL=""
QDRANT_INDEX_NAME=""
QDRANT_API_KEY=""# Opensearch
OPENSEARCH_URL=""
OPENSEARCH_USER=""
OPENSEARCH_PASSWORD=""
OPENSEARCH_INDEX_NAME=""# LLM
LLM_MODEL="" # llama, openai
LLM_MODEL_NAME_OR_PATH="" # model name
OPENAI_API_KEY="" # if using openai# SQL
SQLITE_SQL_PATH="" # sqlit db path# MYSQL
MYSQL_HOST="" # localhost or Ip Address
MYSQL_USER=""
MYSQL_PASSWORD=""
MYSQL_DATABASE=""
MYSQL_PORT="" # default port is 3306```
Method 1:
To load the .env file. Env file should have the credentials
```shell
%load_ext dotenv
%dotenv
%dotenv relative/or/absolute/path/to/.env(or)
dotenv -f .env run -- python
```
Method 2:
```python
from semantic_ai.config import Settings
settings = Settings()
```# Un-Structure
### 1. Import the module
```python
import asyncio
import semantic_ai
```### 2. To download the files from a given source, extract the content from the downloaded files and index the extracted data in the given vector db.
```python
await semantic_ai.download()
await semantic_ai.extract()
await semantic_ai.index()
```
After completion of download, extract and index, we can generate the answer from indexed vector db. That code given below.
### 3. To generate the answer from indexed vector db using retrieval LLM model.
```python
search_obj = await semantic_ai.search()
query = ""
search = await search_obj.generate(query)
```
Suppose the job is running for a long time, we can watch the number of files processed, the number of files failed, and that filename stored in the text file that is processed and failed in the 'EXTRACTED_DIR_PATH/meta' directory.### Example
To connect the source and get the connection object. We can see that in the examples folder.
Example: SharePoint connector
```python
from semantic_ai.connectors import SharepointCLIENT_ID = '' # sharepoint client id
CLIENT_SECRET = '' # sharepoint client seceret
TENANT_ID = '' # sharepoint tenant id
SCOPE = 'https://graph.microsoft.com/.default' # scope
HOST_NAME = ".sharepoint.com" # for example 'contoso.sharepoint.com'# Sharepoint object creation
connection = Sharepoint(
client_id=CLIENT_ID,
client_secret=CLIENT_SECRET,
tenant_id=TENANT_ID,
host_name=HOST_NAME,
scope=SCOPE
)
```# Structure
### 1. Import the module
```python
import asyncio
import semantic_ai
```### 2. The database connection
#### Sqlite:
```python
from semantic_ai.connectors import Sqlitefile_path=
sql = Sqlite(sql_path=file_path)
```#### Mysql:
```python
from semantic_ai.connectors import Mysqlsql = Mysql(
host=,
user=,
password=,
database=,
port= # 3306 is default port
)
```### 3. To generate the answer from db using retrieval LLM model.
```python
query = ""
search_obj = await semantic_ai.db_search(query=query)
```## Run in the server
```shell
$ semantic_ai serve -f .envINFO: Loading environment from '.env'
INFO: Started server process [43973]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
```
Open your browser at http://127.0.0.1:8000/semantic-ai### Interactive API docs
Now go to http://127.0.0.1:8000/docs.
You will see the automatic interactive API documentation (provided by Swagger UI):
![Swagger UI](https://github.com/decisionfacts/semantic-ai/blob/master/docs/source/_static/images/img.png?raw=True)