Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/decorator-factory/py-simpleparser
https://github.com/decorator-factory/py-simpleparser
philosophy python shitpost simple
Last synced: 18 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/decorator-factory/py-simpleparser
- Owner: decorator-factory
- License: unlicense
- Created: 2023-02-19T00:22:43.000Z (almost 2 years ago)
- Default Branch: master
- Last Pushed: 2024-02-17T12:43:44.000Z (10 months ago)
- Last Synced: 2024-11-30T16:00:18.712Z (22 days ago)
- Topics: philosophy, python, shitpost, simple
- Language: Python
- Homepage:
- Size: 40 KB
- Stars: 2
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
> I do not know with what weapons World War III will be fought, but World War IV will be fought with sticks and stones
>
> — someone, probably# py-simpleparser
This is a post-modern Python library for parsing/validating unstructured data, such as JSON returned by an HTTP server or a YAML configuration.
## Installation
1. Make sure you're using Python >= 3.9
2. Copy the `simpleparser.py` file from this repository into your project## Philosophy and rationale
:bulb: Make sure to read the tutorial first. But I'm not gonig to stop you :^)
What gives?
This library stems from my general dissatisfaction with popular existing Python solutions to the very common
problem of parsing unstructured data.- **Parsing type annotations** is... complicated. Python doesn't provide a nice framework to do that, and
it's generally a mess. How do you automatically generate a parser for a generic class, respecting its variance?
I'll sleep better at night without such knowledge.- ...but type checkers are kinda nice. Unfortunately, in Python there's no way to make a nice declarative tool like
[zod from TypeScript](https://zod.dev/) where types are inferred from the schema, not the other way around.- Implicit coercions. That's a bad default. The good default is rejecting invalid data.
> I want a string, but you send me an integer. I am not going to guess what you meant,
> there's something wrong on your side.If you want the rules to be more relaxed, specify where and how lax you want to be explicitly.
> Explicit is better than implicit.
>
> Errors should never pass silently.
>
> Unless explicitly silenced.- **Simple cases and complex cases**. It's easy to optimize for the simple case of needing to map a JSON with 5 fields
to a `dataclass` of 5 fields with the same names. However, the real world is often more complicated.Data can be more complicated.
Maybe your data uses `camelCase` for names. Or maybe `PascalCase`. If it's using `PascalCase`, should
HTTPClient be `h_t_t_p_client` or `http_client`, and what about `IAmAMD`
('I am a [M.D.](https://en.wikipedia.org/wiki/Doctor_of_Medicine)')?The data might contain flat data that you want to be nested. It's pretty reasonable to group `{"x", "y"}` to a single `pos`
attribute. (Or vice versa --- flatten something that's nested in the raw representation)There's no standard way to represent tagged unions (sum types, variant record, whatever) in JSON/YAML.
In fact, Telegram has at least two ways of doing so.
[Some developers](https://discord.com/developers/docs/resources/channel#message-object) apparently don't believe in
tagged unions, and instead model their data as a record with 30 optional fields :facepalm: . The Rust library [`serde`](https://serde.rs/enum-representations.html) has some solutions to this, but I haven't seen anything similar in Python.This is the kind of philosphy I like:
> Here's the recipe to solve 90% of your problems. It'a a bit more wordy than just slapping on a decorator or
> inheriting from a base class, but it's simple code. If you want something more complicated, use the
> Turing-complete language we already have to express your custom bits.So this project is not much of a library, it's mostly a suggestion to take an alternative approach to parsing
untrusted data using simpler tools that you already have.## Tutorial
For an introduction, we are going to implement a module that works with a small part of [Telegram's Bot API](https://core.telegram.org/bots/api), namely the [`Update` object](https://core.telegram.org/bots/api#update).
### Our model
First, we need to decide how to model this thing. For our humble bot, we will only need two update types:
- `message`: "New incoming message of any kind - text, photo, sticker, etc."
- `edited_message`: "New version of a message that is known to the bot and was edited"Would this be a good model?
```py
@dataclass(frozen=True)
class Update:
update_id: int
message: Union[Message, None] = None
edited_message: Union[Message, None] = None
```
I don't think that's going to serve us well. It's going to be hard to work with, because there are
invalid and otherwise awkward states this `Update` can be in.I would use something like this as our model:
```py
@dataclass(frozen=True)
class NewMessage:
message: Message@dataclass(frozen=True)
class MessageEdited:
message: Message@dataclass(frozen=True)
class UnsupportedUpdate:
raw: objectUpdateBody = Union[
NewMessage,
MessageEdited,
UnsupportedUpdate,
]@dataclass(frozen=True)
class Update:
update_id: int
body: UpdateBody
```
This describes our domain pretty well:- we don't support every possible update (hence `UnsupportedUpdate`)
- there is exactly one "event" in an update### Parsing a `Message`
For now, we'll have a very simple model for a message, because we only need a few things from it:
```py
from __future__ import annotations
from typing import Union
from datetime import datetime
from dataclasses import dataclass@dataclass(frozen=True)
class Message:
message_id: int
sent_at: datetime
author: Union[User, Chat]
text: Union[str, None] = None@dataclass(frozen=True)
class User:
user_id: int
first_name: str
username: Union[str, None] = None@dataclass(frozen=True)
class Chat:
chat_id: int
title: str
```
And here's how you parse a `Message`:
```py
from simpleparser import (
is_any_of,
is_int,
is_str,
has_field,
has_optional_field,
ParseError,
Verbose,
)def is_message(source: object) -> Message:
return Message(
message_id=has_field("message_id", is_int)(source),
sent_at=has_field("date", _is_timestamp)(source),
author=is_any_of(
has_field("sender_chat", _is_chat),
has_field("from", _is_user),
)(source),
text=has_optional_field("text", is_str)(source),
)def _is_chat(source: object) -> Chat:
return Chat(
chat_id=has_field("id", is_int)(source),
title=is_any_of(has_field("title", is_str))(source),
)def _is_user(source: object) -> User:
return User(
user_id=has_field("id", is_int)(source),
first_name=has_field("first_name", is_str)(source),
username=has_optional_field("username", is_str)(source),
)def _is_timestamp(source: object) -> datetime:
timestamp = is_int(source)
try:
return datetime.fromtimestamp(timestamp)
except (ValueError, OverflowError):
raise ParseError(Verbose("Timestamp is too big"))
```Let's try our parser on some example messages.
```
message_from_chat = {
"message_id": 100,
"date": 1676769964,
"sender_chat": {"id": 666, "title": "Some Chat"},
}
print(is_message(message_from_chat))>>> Message(message_id=100, sent_at=datetime.datetime(2023, 2, 19, 4, 26, 4), author=Chat(chat_id=666, title='Some Chat'), text=None)
```
```
message_from_user = {
"message_id": 25045,
"date": 1676769966,
"from": {"id": 11111, "first_name": "Bob"},
"text": "Hello there!",
}
print(is_message(message_from_user))>>> Message(message_id=25045, sent_at=datetime.datetime(2023, 2, 19, 4, 26, 6), author=User(user_id=11111, first_name='Bob', username=None), text='Hello there!')
```
```
bad_message = {
"message_id": 25045,
"date": 1676769966,
"from": {"id": 11111, "first_name": 42},
"text": "Hello there!",
}
is_message(bad_message)...
Traceback (most recent call last):
File "/.../tutorial.py", line 95, in
is_message(bad_message)
File "/.../tutorial.py", line 43, in is_message
author=is_any_of(
^^^^^^^^^^
File "/.../simpleparser.py", line 289, in _is_any_of
raise ParseError(MultipleErrors(tuple(errors)))
simpleparser.ParseError: all possibilities failed:
- at key 'sender_chat': Key 'sender_chat' not found
- at key 'from': at key 'first_name': expected a string, got
```### Parsing the `UpdateBody`
```py
from simpleparser import map_parser, is_alwaysdef is_update_body(source: object) -> UpdateBody:
return is_any_of(
map_parser(NewMessage, has_field("message", is_message)),
map_parser(MessageEdited, has_field("message_edited", is_message)),
is_always(UnsupportedUpdate(source)),
)(source)
```
Hm... actually, we're not doing anything with the source besides passing it to other parsers.
Let's refactor our code slightly:
```py
from simpleparser import is_anythingis_update_body = is_any_of(
map_parser(NewMessage, has_field("message", is_message)),
map_parser(MessageEdited, has_field("message_edited", is_message)),
map_parser(UnsupportedUpdate, is_anything),
)
```Better error messages
This `is_any_of` is useful when you have few options, but the error message will not be very clear
with 10 variants. We can give each "branch" a name:
```py
from simpleparser import is_any_of_describedis_update_body = is_any_of_described(
(
"New message",
map_parser(NewMessage, has_field("message", is_message)),
),
(
"Message edited",
map_parser(MessageEdited, has_field("message_edited", is_message)),
),
(
"Unsupported update",
map_parser(UnsupportedUpdate, is_anything),
),
)
```### Parsing the `Update`
```py
def is_update(source: object) -> Update:
return Update(
update_id=has_field("update_id", is_int)(source),
body=is_update_body(source),
)
```Let's see our parser in action:
```py
>>> is_update({
... "update_id": 257,
... "message": {
... "message_id": 100,
... "date": 1676769964,
... "sender_chat": {"id": 666, "title": "Some Chat"},
... },
... })
...
Update(
update_id=257,
body=NewMessage(
message=Message(
message_id=100,
sent_at=datetime.datetime(2023, 2, 19, 4, 26, 4),
author=Chat(chat_id=666, title='Some Chat'),
text=None,
),
),
)>>> is_update({
... "update_id": 257,
... "unknown_update": {
... "duckies": 666,
... },
... })
...
Update(update_id=258, body=UnsupportedUpdate(raw={'update_id': 258, 'unknown_update': {'duckies': 666}}))>>> is_update({"update_id": "yes!"})
Traceback (most recent call last):
...
simpleparser.ParseError: at key 'update_id': expected integer, got
```### Making our parser more robust
What we ended up with isn't bad, but there are some issues, especially as we're going to scale
to accept more updates:- **Performance.** The way `is_any_of` works is: it tries all the given options one by one
until it finds an option that matches. This makes it very flexible, but it also means
that if there are 100 options, the parser will potentially have to go through all
the 100 options on every message.In our case, we can optimize this because we know what update we want to parse based
on the second key present in the `Update` object.- **Error handling and unknown updates.** What happens if Telegram gives us a `message_edited`
update with a body that doesn't match our expectations? Right now the parser will classify that
as an `UnsupportedUpdate`, and we'll probably ignore it. That's very bad! We want to get an
error in that case.Here's one way you can solve the second problem:
```py
from simpleparser import is_dictdef is_update_body(source: object) -> UpdateBody:
raw_dict = is_dict(source)if "message" in raw_dict:
return NewMessage(is_message(raw_dict["message"]))
elif "message_edited" in raw_dict:
return MessageEdited(is_message(raw_dict["message_edited"]))
else:
return UnsupportedUpdate(raw_dict)
```This is still not perfect, we're going to accept updates which have both a `message` and
`message_edited`. And we're still have a time complexity of `O(update_kinds)`.We can solve both of these problems with a dictionary lookup:
```py
from simpleparser import Expectation_known_events = {
"message": map_parser(NewMessage, is_message),
"message_edited": map_parser(MessageEdited, is_message),
}def is_update_body(source: object) -> UpdateBody:
raw_dict = is_dict(source)
keys = raw_dict.keys() - {"update_id"}
if len(keys) != 1:
raise ParseError(Expectation(expected="one key", actual=str(list(keys))))
[event_type] = keysif event_type in _known_events:
return _known_events[event_type](raw_dict[event_type])
else:
return UnsupportedUpdate(raw_dict)
```
### Advanced topic: Error values
### Error values
Do we want to raise an exception on an invalid update from Telegram?
When we poll Telegram, we must specify what update ID we want the updates to start with.
When we get update `#100`, we tell Telegram to send updates starting with `#101` next time.
So our "main loop" will look something like this:```py
last_update = 0while True:
response = requests.get(f"{api_root}/getUpdates", query={"offset": last_update, "timeout": 2}).json()
if not response["ok"]:
logger.error(f"Oh no! We're not OK: {response!r}")
time.sleep(5)
continueraw_updates = response["result"]
for raw_update in raw_updates:
try:
update = is_update(raw_update)
except ParseError as exc:
logger.error("Wow, telegram sent us something stupid. ", exc_info=exc)
else:
last_update = max(last_update, update.id + 1)
process_update(update)
```Do you see the problem? If we get an invalid update, we ignore its ID! If that was the
only update in a while, on the next iteration we're going to ask for the same update, without a timeout.
Telegram will be very mad and will put us in the dreaded [429 Jail](https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429).Another point is that we might want to still process updates that weren't quite right. Perhaps
we want to keep track of update statistics in `process_update`, or something else.```diff
+ from simpleparser improt ErrorValue+ @dataclass(frozen=True)
+ class InvalidUpdateReceived:
+ error: ErrorValue
+ raw: objectUpdateBody = Union[
NewMessage,
MessageEdited,
UnsupportedUpdate,
+ InvalidUpdateReceived,
]
```An `ErrorValue` is a representation of what exactly went wrong during parsing.
It contains some clue as to what went wrong and where.Source code for `ErrorValue`
```py
@dataclass(frozen=True)
class Verbose:
message: str@dataclass(frozen=True)
class Expectation:
expected: str
actual: str@dataclass(frozen=True)
class MultipleErrors:
errors: tuple[ErrorValue, ...]def __post_init__(self) -> None:
if len(self.errors) < 2:
raise RuntimeError("Expected at least two errors for `MultipleErrors`")@dataclass(frozen=True)
class AtIndex:
index: int
error: ErrorValue@dataclass(frozen=True)
class AtKey:
key: str
error: ErrorValue@dataclass
class Note:
note: str
original: ErrorValueErrorValue = Union[
Verbose,
Expectation,
MultipleErrors,
AtIndex,
AtKey,
Note,
]
```Here's how we can adjust the `is_update_body` parser to accomodate this design:
```py
_known_events = {
"message": map_parser(NewMessage, is_message),
"message_edited": map_parser(MessageEdited, is_message),
}def is_update_body(source: object) -> UpdateBody:
raw_dict = is_dict(source)
keys = raw_dict.keys() - {"update_id"}
if len(keys) != 1:
error = Expectation(expected="one key", actual=str(list(keys)))
return InvalidUpdateReceived(error, source)
[event_type] = keysevent_payload = raw_dict[event_type]
if event_type in _known_events:
try:
return _known_events[event_type](event_payload)
except ParseError as exc:
return InvalidUpdateReceived(exc.error, event_payload)
else:
return UnsupportedUpdate(raw_dict)
```### Conclusion
A short recap on `simpleparser`:
- A parser is a function that accepts an object and either returns its parsed version, or raises `ParseError`
- To parse a dictionary with known fields, use `has_field`
- If the field can be missing, use `has_optional_field` instead
- To try several options in order, use `any_of`
- To adjust the output of an already existing parser, use `map_parser`
- To accept any object at all, use `is_anything`
- If you don't see how to combine existing parsers together in a nice way, write your own from scratch.