Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/deeplearningbrasil/mars-gym


https://github.com/deeplearningbrasil/mars-gym

Last synced: about 2 months ago
JSON representation

Awesome Lists containing this project

README

        

========
Overview
========

.. start-badges

.. list-table::
:stub-columns: 1

* - docs
- |docs|
* - tests
- | |travis|
|
* - package
- | |version| |wheel| |supported-versions| |supported-implementations|
| |commits-since|
.. |docs| image:: https://readthedocs.org/projects/mars-gym/badge/?style=flat
:target: https://readthedocs.org/projects/mars-gym
:alt: Documentation Status

.. |travis| image:: https://api.travis-ci.org/deeplearningbrasil/mars-gym.svg?branch=master
:alt: Travis-CI Build Status
:target: https://travis-ci.org/deeplearningbrasil/mars-gym

.. |version| image:: https://img.shields.io/pypi/v/mars-gym.svg
:alt: PyPI Package latest release
:target: https://pypi.org/project/mars-gym

.. |wheel| image:: https://img.shields.io/pypi/wheel/mars-gym.svg
:alt: PyPI Wheel
:target: https://pypi.org/project/mars-gym

.. |supported-versions| image:: https://img.shields.io/pypi/pyversions/mars-gym.svg
:alt: Supported versions
:target: https://pypi.org/project/mars-gym

.. |supported-implementations| image:: https://img.shields.io/pypi/implementation/mars-gym.svg
:alt: Supported implementations
:target: https://pypi.org/project/mars-gym

.. |commits-since| image:: https://img.shields.io/github/commits-since/deeplearningbrasil/mars-gym/v0.1.0.svg
:alt: Commits since latest release
:target: https://github.com/deeplearningbrasil/mars-gym/compare/v0.1.0...master

.. end-badges

MARS-Gym (MArketplace Recommender Systems Gym), a benchmark framework for modeling, training, and evaluating RL-based recommender systems for marketplaces.

.. figure:: images/img1.jpg
:alt: MDP

Three main components composes the framework:

- Data Engineering Module: A highly customizable module where the consumer can ingest and process a massive amount of data for learning using spark jobs.
- Simulation Module: Holds an extensible module built on top of PyTorch to design learning architectures. It also possesses an OpenAI’s Gym environment that ingests the processed dataset to run a multi-agent system that simulates the targeted marketplace.
- Evaluation Module: Provides a set of distinct perspectives on the agent’s performance. It presents traditional recommendation metrics, off-policy evaluation metrics, and fairness indicators. This component is powered by a user-friendly interface to facilitate the analysis and comparison betweenagents

.. figure:: images/img2.jpg
:alt: Framework

Framework

Dependencies and Requirements
-----------------------------

- python=3.6.7
- pandas=0.25.1
- matplotlib=2.2.2
- scipy=1.3.1
- numpy=1.17.0
- seaborn=0.8.1
- scikit-learn=0.21.2
- pytorch=1.2.0
- tensorboardx=1.6
- luigi=2.7.5
- tqdm=4.33
- requests=2.18.4
- jupyterlab=1.0.2
- ipywidgets=7.5.1
- diskcache=3.0.6
- pyspark=2.4.3
- psutil=5.2.2
- category\_encoders
- plotly=4.4.1
- imbalanced-learn==0.4.3
- torchbearer==0.5.1
- pytorch-nlp==0.4.1
- unidecode==1.1.1
- streamlit==0.52.2
- gym==0.15.4

Free software: MIT license

Installation
============

::

pip install mars-gym

You can also install the in-development version with::

pip install https://github.com/deeplearningbrasil/mars-gym/archive/master.zip

Documentation
=============

https://mars-gym.readthedocs.io/

Development
===========

To run the all tests run::

tox

Note, to combine the coverage data from all the tox environments run:

.. list-table::
:widths: 10 90
:stub-columns: 1

- - Windows
- ::

set PYTEST_ADDOPTS=--cov-append
tox

- - Other
- ::

PYTEST_ADDOPTS=--cov-append tox

Usage
-----

Simulate Example
----------------

.. code:: bash

mars-gym run interaction --project PROJECT \
--n-factors N_FACTORS --learning-rate LR --optimizer OPTIMIZER \
--epochs EPOCHS --obs-batch-size OBS_BATCH \
--batch-size BATCH_SIZE --num-episodes NUM_EP \
--bandit-policy BANDIT --bandit-policy-params BANDIT_PARAMS

Evaluate Example
----------------

.. code:: bash

mars-gym evaluate iteraction \
--model-task-id MODEL_TASK_ID --fairness-columns "[]" \
--direct-estimator-class DE_CLASS

Evaluation Module
-----------------

.. code:: bash

mars-gym viz

Cite
----

Please cite the associated paper for this work if you use this code:

::

@misc{santana2020marsgym,
title={MARS-Gym: A Gym framework to model, train, and evaluate Recommender Systems for Marketplaces},
author={Marlesson R. O. Santana and Luckeciano C. Melo and Fernando H. F. Camargo and Bruno Brandão and Anderson Soares and Renan M. Oliveira and Sandor Caetano},
year={2020},
eprint={2010.07035},
archivePrefix={arXiv},
primaryClass={cs.IR}
}