Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/deepset-ai/haystack
:mag: AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots.
https://github.com/deepset-ai/haystack
ai bert chatgpt generative-ai gpt-3 information-retrieval language-model large-language-models llm machine-learning nlp python pytorch question-answering rag retrieval-augmented-generation semantic-search squad summarization transformers
Last synced: 6 days ago
JSON representation
:mag: AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots.
- Host: GitHub
- URL: https://github.com/deepset-ai/haystack
- Owner: deepset-ai
- License: apache-2.0
- Created: 2019-11-14T09:05:28.000Z (about 5 years ago)
- Default Branch: main
- Last Pushed: 2024-10-29T13:04:38.000Z (2 months ago)
- Last Synced: 2024-10-29T13:37:17.807Z (2 months ago)
- Topics: ai, bert, chatgpt, generative-ai, gpt-3, information-retrieval, language-model, large-language-models, llm, machine-learning, nlp, python, pytorch, question-answering, rag, retrieval-augmented-generation, semantic-search, squad, summarization, transformers
- Language: Python
- Homepage: https://haystack.deepset.ai
- Size: 42.1 MB
- Stars: 17,396
- Watchers: 141
- Forks: 1,895
- Open Issues: 117
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: code_of_conduct.txt
- Citation: CITATION.cff
- Codeowners: .github/CODEOWNERS
- Security: SECURITY.md
Awesome Lists containing this project
- awesome-prompts - Haystack - source LLM orchestration framework to build customizable, production-ready LLM applications in Python. (Prompting libraries & tools (in alphabetical order))
- awesome-llmops - haystack - ![Repo stars of deepset-ai/haystack](https://img.shields.io/github/stars/deepset-ai/haystack?style=social) -an open source NLP framework to interact with the data using Transformer models and LLMs. (Tools (GitHub) / LLMOps vs MLOps)
- awesome-python-machine-learning-resources - GitHub - 14% open · ⏱️ 25.08.2022): (文本数据和NLP)
- awesome-llmops - Haystack - answering and more. | ![GitHub Badge](https://img.shields.io/github/stars/deepset-ai/haystack.svg?style=flat-square) | (LLMOps / Observability)
- awesome-ChatGPT-repositories - haystack - :mag: Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more. (NLP)
- awesome-llm-eval - Haystack - ai/haystack.svg?style=social) | 快速构建带有LLM代理、语义搜索、问答等功能的应用程序。 | (LLMOps / Popular-LLM)
- MRCPapers - deepset-ai / Haystack
- awesome-list - Haystack - A high-level natural language processing library for deployment and production, based on PyTorch and HuggingFace Transformers. (Natural Language Processing / Conversation & Translation)
- awesome-generative-ai - Haystack - answering) (Large Language Models (LLMs) / Contribute to our Repository)
- awesome-langchain - Haystack - ai/haystack?style=social) (Other LLM Frameworks / Videos Playlists)
- awesome-llm-agents - Haystack - End-to-end NLP framework. (Frameworks)
- awesome-ai-api-projects - haystack - ready LLM applications. Connect components (models, vector DBs, file converters), builde RAG, question answering, semantic search or conversational agent chatbots. | open | pip package | Both, offical | [OpenAI](https://platform.openai.com/playground), [Google Gemini](https://ai.google.dev/gemini-api), [Claude](https://www.anthropic.com/), local models | ![GitHub last commit](https://img.shields.io/github/last-commit/deepset-ai/haystack?label=%20) | (AI Agent / Framework)
- StarryDivineSky - deepset-ai/haystack - 3等)与数据交互。Haystack提供了生产就绪的工具来快速构建类似ChatGPT的问题回答、语义搜索、文本生成等。 (A01_文本生成_文本对话 / 大语言对话模型及数据)
- Awesome-Prompt-Engineering - [Github
- awesome-chatgpt - deepset-ai/haystack - Haystack is a Python library and framework for building customizable and production-ready LLM applications, including retrieval-augmented generation, question answering, semantic search, and conversational agent chatbots. (SDK, Libraries, Frameworks / Python)
- awesome_chatgpt_ch - deepset-ai/haystack - 3 之类的模型,从指定的数据中提取信息,构建属于自己的检索或者问答系统。(来自 chatgpt 的回答:Farm和Haystack是两个独立的项目,但它们都是在NLP领域中用于文本处理和信息检索的工具。Farm(FastAPI for Repeated Models)是一个基于PyTorch的开源框架,可帮助用户快速训练和部署NLP模型,例如文本分类、命名实体识别和语义搜索等任务。Haystack是一个基于Python的框架,提供了一组简单易用的API,使得用户可以快速建立一个端到端的文本搜索引擎,并实现各种复杂的信息检索任务,例如文本分类、语义搜索和问答系统等。因为Farm和Haystack都是在NLP领域中使用的工具,所以它们经常被一起使用,从而形成了Farm-Haystack这样的组合。在这种情况下,Farm用于训练和部署NLP模型,而Haystack则用于构建和部署文本搜索引擎,将这两个工具结合起来,可以实现各种NLP和信息检索任务,例如自然语言问答和智能客服等。) | (开源项目)
- awesome-production-machine-learning - Haystack - ai/haystack.svg?style=social) - Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-3 and alike). Haystack offers production-ready tools to quickly build ChatGPT-like question answering, semantic search, text generation, and more. (Industry Strength NLP)
- project-awesome - deepset-ai/haystack - :mag: AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your d (Python)
- awesome-agents - haystack - ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots. | framework | 17,560 | 1,906 | 103 | 254 | 2 days, 1 hrs, 7 mins | 130 | Apache License 2.0 | (Table of Open-Source AI Agents Projects)
- awesome-agents - haystack - ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots. | framework | 17,560 | 1,906 | 103 | 254 | 2 days, 1 hrs, 7 mins | 130 | Apache License 2.0 | (Table of Open-Source AI Agents Projects)
- awesome-agents - Haystack - ai/haystack?style=social) (Frameworks)
- awesome-ai-papers - [haystack - Chatchat](https://github.com/chatchat-space/Langchain-Chatchat)\] (NLP / 3. Pretraining)
- awesome - deepset-ai/haystack - AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots. (Python)
- Awesome-RAG - Haystack - LLM orchestration framework to build customizable, production-ready LLM applications. (🧰 Frameworks that Facilitate RAG)
- AiTreasureBox - deepset-ai/haystack - 01-07_18472_12](https://img.shields.io/github/stars/deepset-ai/haystack.svg)|🔍 Haystack is an open source NLP framework to interact with your data using Transformer models and LLMs (GPT-4, ChatGPT and alike). Haystack offers production-ready tools to quickly build complex question answering, semantic search, text generation applications, and more.| (Repos)
- awesome-ccamel - deepset-ai/haystack - AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots. (Python)
- awesome-langchain-zh - Haystack - ai/haystack?style=social):使用 Transformer 模型和 LLM 与你的数据进行交互的 NLP 框架 (其他LLM框架 / 文章)
- awesome-repositories - deepset-ai/haystack - AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. W (Python)
- awesome-rainmana - deepset-ai/haystack - AI orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. W (Python)
- awesome_ai_agents - Haystack - Haystack is an end-to-end LLM framework facilitating the construction of applications powered by LLMs, Transformer models, vector search, and more, offering flexibility, transparency, and extensibility, with features including retrieval-augmented generation, document search, question answering, and semantic search, along with a diverse user base including companies like Airbus, Apple, and Netflix [github](https://github.com/deepset-ai/haystack) | [github profile](https://github.com/deepset-ai) (Learning / Repositories)
- Awesome-LLMOps - Haystack - ai/haystack.svg) | ![Release](https://img.shields.io/github/release/deepset-ai/haystack) | ![Contributors](https://img.shields.io/github/contributors/deepset-ai/haystack) | 🔍 LLM orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots. | | (LLMOps)
- Awesome-LLMOps - Haystack - ai/haystack.svg) | ![Release](https://img.shields.io/github/release/deepset-ai/haystack) | ![Contributors](https://img.shields.io/github/contributors/deepset-ai/haystack) | 🔍 LLM orchestration framework to build customizable, production-ready LLM applications. Connect components (models, vector DBs, file converters) to pipelines or agents that can interact with your data. With advanced retrieval methods, it's best suited for building RAG, question answering, semantic search or conversational agent chatbots. | | (LLMOps)
- awesome-ai-papers - [haystack - Chatchat](https://github.com/chatchat-space/Langchain-Chatchat)\]\[[ragflow](https://github.com/infiniflow/ragflow)\] (NLP / 3. Pretraining)
README
| | |
| ------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| CI/CD | [![Tests](https://github.com/deepset-ai/haystack/actions/workflows/tests.yml/badge.svg)](https://github.com/deepset-ai/haystack/actions/workflows/tests.yml) [![types - Mypy](https://img.shields.io/badge/types-Mypy-blue.svg)](https://github.com/python/mypy) [![Coverage Status](https://coveralls.io/repos/github/deepset-ai/haystack/badge.svg?branch=main)](https://coveralls.io/github/deepset-ai/haystack?branch=main) [![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff) |
| Docs | [![Website](https://img.shields.io/website?label=documentation&up_message=online&url=https%3A%2F%2Fdocs.haystack.deepset.ai)](https://docs.haystack.deepset.ai) |
| Package | [![PyPI](https://img.shields.io/pypi/v/haystack-ai)](https://pypi.org/project/haystack-ai/) ![PyPI - Downloads](https://img.shields.io/pypi/dm/haystack-ai?color=blue&logo=pypi&logoColor=gold) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/haystack-ai?logo=python&logoColor=gold) [![Conda Version](https://img.shields.io/conda/vn/conda-forge/haystack-ai.svg)](https://anaconda.org/conda-forge/haystack-ai) [![GitHub](https://img.shields.io/github/license/deepset-ai/haystack?color=blue)](LICENSE) [![License Compliance](https://github.com/deepset-ai/haystack/actions/workflows/license_compliance.yml/badge.svg)](https://github.com/deepset-ai/haystack/actions/workflows/license_compliance.yml) |
| Meta | [![Discord](https://img.shields.io/discord/993534733298450452?logo=discord)](https://discord.com/invite/xYvH6drSmA) [![Twitter Follow](https://img.shields.io/twitter/follow/haystack_ai)](https://twitter.com/haystack_ai) |[Haystack](https://haystack.deepset.ai/) is an end-to-end LLM framework that allows you to build applications powered by
LLMs, Transformer models, vector search and more. Whether you want to perform retrieval-augmented generation (RAG),
document search, question answering or answer generation, Haystack can orchestrate state-of-the-art embedding models
and LLMs into pipelines to build end-to-end NLP applications and solve your use case.## Installation
The simplest way to get Haystack is via pip:
```sh
pip install haystack-ai
```Install from the `main` branch to try the newest features:
```sh
pip install git+https://github.com/deepset-ai/haystack.git@main
```Haystack supports multiple installation methods including Docker images. For a comprehensive guide please refer
to the [documentation](https://docs.haystack.deepset.ai/docs/installation).## Documentation
If you're new to the project, check out ["What is Haystack?"](https://haystack.deepset.ai/overview/intro) then go
through the ["Get Started Guide"](https://haystack.deepset.ai/overview/quick-start) and build your first LLM application
in a matter of minutes. Keep learning with the [tutorials](https://haystack.deepset.ai/tutorials). For more advanced
use cases, or just to get some inspiration, you can browse our Haystack recipes in the
[Cookbook](https://haystack.deepset.ai/cookbook).At any given point, hit the [documentation](https://docs.haystack.deepset.ai/docs/intro) to learn more about Haystack, what can it do for you and the technology behind.
## Features
> [!IMPORTANT]
> **You are currently looking at the readme of Haystack 2.0**. We are still maintaining Haystack 1.x to give everyone
> enough time to migrate to 2.0. [Switch to Haystack 1.x here](https://github.com/deepset-ai/haystack/tree/v1.x).- **Technology agnostic:** Allow users the flexibility to decide what vendor or technology they want and make it easy to switch out any component for another. Haystack allows you to use and compare models available from OpenAI, Cohere and Hugging Face, as well as your own local models or models hosted on Azure, Bedrock and SageMaker.
- **Explicit:** Make it transparent how different moving parts can “talk” to each other so it's easier to fit your tech stack and use case.
- **Flexible:** Haystack provides all tooling in one place: database access, file conversion, cleaning, splitting, training, eval, inference, and more. And whenever custom behavior is desirable, it's easy to create custom components.
- **Extensible:** Provide a uniform and easy way for the community and third parties to build their own components and foster an open ecosystem around Haystack.Some examples of what you can do with Haystack:
- Build **retrieval augmented generation (RAG)** by making use of one of the available vector databases and customizing your LLM interaction, the sky is the limit 🚀
- Perform Question Answering **in natural language** to find granular answers in your documents.
- Perform **semantic search** and retrieve documents according to meaning.
- Build applications that can make complex decisions making to answer complex queries: such as systems that can resolve complex customer queries, do knowledge search on many disconnected resources and so on.
- Scale to millions of docs using retrievers and production-scale components.
- Use **off-the-shelf models** or **fine-tune** them to your data.
- Use **user feedback** to evaluate, benchmark, and continuously improve your models.> [!TIP]
>
>
> Are you looking for a managed solution that benefits from Haystack? [deepset Cloud](https://www.deepset.ai/deepset-cloud?utm_campaign=developer-relations&utm_source=haystack&utm_medium=readme) is our fully managed, end-to-end platform to integrate LLMs with your data, which uses Haystack for the LLM pipelines architecture.## 🆕 deepset Studio: Your Development Environment for Haystack
Use **deepset Studio** to visually create, deploy, and test your Haystack pipelines. Learn more about it in [our announcement post](https://haystack.deepset.ai/blog/announcing-studio).
![studio](https://github.com/user-attachments/assets/e4f09746-20b5-433e-8261-eca224ac23b3)
👉 [Sign up](https://landing.deepset.ai/deepset-studio-signup)!
## Telemetry
Haystack collects **anonymous** usage statistics of pipeline components. We receive an event every time these components are initialized. This way, we know which components are most relevant to our community.
Read more about telemetry in Haystack or how you can opt out in [Haystack docs](https://docs.haystack.deepset.ai/docs/telemetry).
## 🖖 Community
If you have a feature request or a bug report, feel free to open an [issue in Github](https://github.com/deepset-ai/haystack/issues). We regularly check these and you can expect a quick response. If you'd like to discuss a topic, or get more general advice on how to make Haystack work for your project, you can start a thread in [Github Discussions](https://github.com/deepset-ai/haystack/discussions) or our [Discord channel](https://discord.com/invite/VBpFzsgRVF). We also check [𝕏 (Twitter)](https://twitter.com/haystack_ai) and [Stack Overflow](https://stackoverflow.com/questions/tagged/haystack).
## Contributing to Haystack
We are very open to the community's contributions - be it a quick fix of a typo, or a completely new feature! You don't need to be a Haystack expert to provide meaningful improvements. To learn how to get started, check out our [Contributor Guidelines](https://github.com/deepset-ai/haystack/blob/main/CONTRIBUTING.md) first.
There are several ways you can contribute to Haystack:
- Contribute to the main Haystack project
- Contribute an integration on [haystack-core-integrations](https://github.com/deepset-ai/haystack-core-integrations)> [!TIP]
>👉 **[Check out the full list of issues that are open to contributions](https://github.com/orgs/deepset-ai/projects/14)**## Who Uses Haystack
Here's a list of projects and companies using Haystack. Want to add yours? Open a PR, add it to the list and let the
world know that you use Haystack!- [Airbus](https://www.airbus.com/en)
- [Alcatel-Lucent](https://www.al-enterprise.com/)
- [Apple](https://www.apple.com/)
- [BetterUp](https://www.betterup.com/)
- [Databricks](https://www.databricks.com/)
- [Deepset](https://deepset.ai/)
- [Etalab](https://www.deepset.ai/blog/improving-on-site-search-for-government-agencies-etalab)
- [Infineon](https://www.infineon.com/)
- [Intel](https://github.com/intel/open-domain-question-and-answer#readme)
- [Intelijus](https://www.intelijus.ai/)
- [Intel Labs](https://github.com/IntelLabs/fastRAG#readme)
- [LEGO](https://github.com/larsbaunwall/bricky#readme)
- [Netflix](https://netflix.com)
- [NOS Portugal](https://www.nos.pt/en/welcome)
- [Nvidia](https://developer.nvidia.com/blog/reducing-development-time-for-intelligent-virtual-assistants-in-contact-centers/)
- [PostHog](https://github.com/PostHog/max-ai#readme)
- [Rakuten](https://www.rakuten.com/)
- [Sooth.ai](https://www.deepset.ai/blog/advanced-neural-search-with-sooth-ai)