https://github.com/deftruth/ssrnet.lite.ai.toolkit
🍅🍅 SSRNet: 190 Kb!! Super fast Age Estimation with MNN/TNN/ONNXRuntime C++. (https://github.com/DefTruth/lite.ai.toolkit)
https://github.com/deftruth/ssrnet.lite.ai.toolkit
ssrnet
Last synced: 5 months ago
JSON representation
🍅🍅 SSRNet: 190 Kb!! Super fast Age Estimation with MNN/TNN/ONNXRuntime C++. (https://github.com/DefTruth/lite.ai.toolkit)
- Host: GitHub
- URL: https://github.com/deftruth/ssrnet.lite.ai.toolkit
- Owner: DefTruth
- License: gpl-3.0
- Created: 2022-01-13T15:38:05.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-02-04T11:28:15.000Z (over 3 years ago)
- Last Synced: 2024-12-17T15:45:38.441Z (6 months ago)
- Topics: ssrnet
- Language: C++
- Homepage:
- Size: 16.1 MB
- Stars: 3
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# ssrnet.lite.ai.toolkit
使用 [🍅🍅 Lite.AI.ToolKit](https://github.com/DefTruth/lite.ai.toolkit) C++工具箱来跑SSRNet年龄估计的一些案例, 包含ONNXRuntime C++、MNN和TNN版本。SSRNet的权重文件大小只有 **190Kb** ,是一个非常轻量级的年龄估计模型。
![]()
![]()
![]()
如果觉得有用,不妨给个Star⭐️🌟支持一下吧~ 🙃🤪🍀
## 2. C++版本源码
SSRNet C++ 版本的源码包含ONNXRuntime、MNN和TNN三个版本,源码可以在 [lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit) 工具箱中找到。本项目主要介绍如何基于 [lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit) 工具箱,直接使用SSRNet来跑人脸检测。需要说明的是,本项目是基于MacOS下编译的 [liblite.ai.toolkit.v0.1.0.dylib](https://github.com/DefTruth/yolox.lite.ai.toolkit/blob/main/lite.ai.toolkit/lib) 来实现的,对于使用MacOS的用户,可以直接下载本项目包含的*liblite.ai.toolkit.v0.1.0*动态库和其他依赖库进行使用。而非MacOS用户,则需要从[lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit) 中下载源码进行编译。[lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit) c++工具箱目前包含80+流行的开源模型,就不多介绍了,只是平时顺手捏的,整合了自己学习过程中接触到的一些模型,感兴趣的同学可以去看看。
* [ssrnet.cpp](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/ort/cv/ssrnet.cpp)
* [ssrnet.h](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/ort/cv/ssrnet.h)
* [mnn_ssrnet.cpp](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_ssrnet.cpp)
* [mnn_ssrnet.h](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_ssrnet.h)
* [tnn_ssrnet.cpp](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_ssrnet.cpp)
* [tnn_ssrnet.h](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_ssrnet.h)ONNXRuntime C++、MNN和TNN版本的推理实现均已测试通过,欢迎白嫖~
## 3. 模型文件
### 3.1 ONNX模型文件
可以从我提供的链接下载 ([Baidu Drive](https://pan.baidu.com/s/1elUGcx7CZkkjEoYhTMwTRQ) code: 8gin) , 也可以从本直接仓库下载。| Class | Pretrained ONNX Files | Rename or Converted From (Repo) | Size |
| :-----------------------------------: | :-----------------------------: | :-------------------------------------------------------: | :---: |
| *lite::cv::face::attr::SSRNet* | ssrnet.onnx | [SSR_Net...](https://github.com/oukohou/SSR_Net_Pytorch) | 190Kb |### 3.2 MNN模型文件
MNN模型文件下载地址,([Baidu Drive](https://pan.baidu.com/s/1KyO-bCYUv6qPq2M8BH_Okg) code: 9v63), 也可以从本直接仓库下载。| Class | Pretrained MNN Files | Rename or Converted From (Repo) | Size |
| :-----------------------------------: | :-----------------------------: | :-------------------------------------------------------: | :---: |
| *lite::mnn::cv::face::attr::SSRNet* | ssrnet.mnn | [SSR_Net...](https://github.com/oukohou/SSR_Net_Pytorch) | 190Kb |### 3.3 TNN模型文件
TNN模型文件下载地址,([Baidu Drive](https://pan.baidu.com/s/1lvM2YKyUbEc5HKVtqITpcw) code: 6o6k), 也可以从本直接仓库下载。| Class | Pretrained TNN Files | Rename or Converted From (Repo) | Size |
| :-----------------------------------: | :-----------------------------: | :-------------------------------------------------------: | :---: |
| *lite::tnn::cv::face::attr::SSRNet* | ssrnet.opt.tnnproto&tnnmodel | [SSR_Net...](https://github.com/oukohou/SSR_Net_Pytorch) | 190Kb |## 4. 接口文档
在[lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit) 中,SSRNet的实现类为:
```c++
class LITE_EXPORTS lite::cv::face::attr::SSRNet;
class LITE_EXPORTS lite::mnn::cv::face::attr::SSRNet;
class LITE_EXPORTS lite::tnn::cv::face::attr::SSRNet;
```该类型目前包含1公共接口`detect`用于进行年龄检测。
```c++
public:
void detect(const cv::Mat &mat, types::Age &age);
```
`detect`接口的输入参数说明:
* mat: cv::Mat类型,BGR格式,一张包含人脸头部的图片(不包含过多的背景)。
* age: types::Age,包含被检测到的年龄;## 5. 使用案例
### 5.1 ONNXRuntime版本
```c++
#include "lite/lite.h"static void test_default()
{
std::string onnx_path = "../hub/onnx/cv/ssrnet.onnx";
std::string test_img_path = "../resources/1.png";
std::string save_img_path = "../logs/1.jpg";
auto *ssrnet = new lite::cv::face::attr::SSRNet(onnx_path);
lite::types::Age age;
cv::Mat img_bgr = cv::imread(test_img_path);
ssrnet->detect(img_bgr, age);
lite::utils::draw_age_inplace(img_bgr, age);
cv::imwrite(save_img_path, img_bgr);
std::cout << "Default Version Done! Detected SSRNet Age: " << age.age << std::endl;
delete ssrnet;
}
```### 5.2 MNN版本
```c++
#include "lite/lite.h"static void test_mnn()
{
#ifdef ENABLE_MNN
std::string mnn_path = "../hub/mnn/cv/ssrnet.mnn";
std::string test_img_path = "../resources/3.png";
std::string save_img_path = "../logs/3_mnn.jpg";
auto *ssrnet = new lite::mnn::cv::face::attr::SSRNet(mnn_path);
lite::types::Age age;
cv::Mat img_bgr = cv::imread(test_img_path);
ssrnet->detect(img_bgr, age);
lite::utils::draw_age_inplace(img_bgr, age);
cv::imwrite(save_img_path, img_bgr);
std::cout << "MNN Version Done! Detected SSRNet Age: " << age.age << std::endl;
delete ssrnet;
#endif
}
```### 5.3 TNN版本
```c++
#include "lite/lite.h"static void test_tnn()
{
#ifdef ENABLE_TNN
std::string proto_path = "../hub/tnn/cv/ssrnet.opt.tnnproto";
std::string model_path = "../hub/tnn/cv/ssrnet.opt.tnnmodel";
std::string test_img_path = "../resources/4.png";
std::string save_img_path = "../logs/4_tnn.jpg";
auto *ssrnet = new lite::tnn::cv::face::attr::SSRNet(proto_path, model_path);
lite::types::Age age;
cv::Mat img_bgr = cv::imread(test_img_path);
ssrnet->detect(img_bgr, age);
lite::utils::draw_age_inplace(img_bgr, age);
cv::imwrite(save_img_path, img_bgr);
std::cout << "TNN Version Done! Detected SSRNet Age: " << age.age << std::endl;
delete ssrnet;
#endif
}
```* 输出结果为:
![]()
![]()
![]()
## 6. 编译运行
在MacOS下可以直接编译运行本项目,无需下载其他依赖库。其他系统则需要从[lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit) 中下载源码先编译*lite.ai.toolkit.v0.1.0*动态库。
```shell
git clone --depth=1 https://github.com/DefTruth/ssrnet.lite.ai.toolkit.git
cd ssrnet.lite.ai.toolkit
sh ./build.sh
```* CMakeLists.txt设置
```cmake
cmake_minimum_required(VERSION 3.17)
project(ssrnet.lite.ai.toolkit)set(CMAKE_CXX_STANDARD 11)
# setting up lite.ai.toolkit
set(LITE_AI_DIR ${CMAKE_SOURCE_DIR}/lite.ai.toolkit)
set(LITE_AI_INCLUDE_DIR ${LITE_AI_DIR}/include)
set(LITE_AI_LIBRARY_DIR ${LITE_AI_DIR}/lib)
include_directories(${LITE_AI_INCLUDE_DIR})
link_directories(${LITE_AI_LIBRARY_DIR})set(OpenCV_LIBS
opencv_highgui
opencv_core
opencv_imgcodecs
opencv_imgproc
opencv_video
opencv_videoio
)
# add your executable
set(EXECUTABLE_OUTPUT_PATH ${CMAKE_SOURCE_DIR}/examples/build)add_executable(lite_ssrnet examples/test_lite_ssrnet.cpp)
target_link_libraries(lite_ssrnet
lite.ai.toolkit
onnxruntime
MNN # need, if built lite.ai.toolkit with ENABLE_MNN=ON, default OFF
ncnn # need, if built lite.ai.toolkit with ENABLE_NCNN=ON, default OFF
TNN # need, if built lite.ai.toolkit with ENABLE_TNN=ON, default OFF
${OpenCV_LIBS}) # link lite.ai.toolkit & other libs.
```* building && testing information:
```shell
[ 50%] Building CXX object CMakeFiles/lite_ssrnet.dir/examples/test_lite_ssrnet.cpp.o
[100%] Linking CXX executable lite_ssrnet
[100%] Built target lite_ssrnet
Testing Start ...
LITEORT_DEBUG LogId: ../hub/onnx/cv/ssrnet.onnx
=============== Input-Dims ==============
input_node_dims: 1
input_node_dims: 3
input_node_dims: 64
input_node_dims: 64
=============== Output-Dims ==============
Output: 0 Name: age Dim: 0 :1
========================================
Default Version Done! Detected SSRNet Age: 35.567
LITEORT_DEBUG LogId: ../hub/onnx/cv/ssrnet.onnx
=============== Input-Dims ==============
input_node_dims: 1
input_node_dims: 3
input_node_dims: 64
input_node_dims: 64
=============== Output-Dims ==============
Output: 0 Name: age Dim: 0 :1
========================================
ONNXRuntime Version Done! Detected SSRNet Age: 27.4245
LITEMNN_DEBUG LogId: ../hub/mnn/cv/ssrnet.mnn
=============== Input-Dims ==============
**Tensor shape**: 1, 3, 64, 64,
Dimension Type: (CAFFE/PyTorch/ONNX)NCHW
=============== Output-Dims ==============
getSessionOutputAll done!
Output: age: **Tensor shape**: 1,
========================================
MNN Version Done! Detected SSRNet Age: 33.37
LITETNN_DEBUG LogId: ../hub/tnn/cv/ssrnet.opt.tnnproto
=============== Input-Dims ==============
input: [1 3 64 64 ]
Input Data Format: NCHW
=============== Output-Dims ==============
age: [1 ]
========================================
TNN Version Done! Detected SSRNet Age: 23.7442
Testing Successful !
```