Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/deftruth/statistic-learning-r-note

📒《统计学习方法-李航: 笔记-从原理到实现,基于R语言》200页PDF,各种手推公式细节讲解,R语言实现. 🎉🎉
https://github.com/deftruth/statistic-learning-r-note

lihang ml r statistic-notes statistics statistics-learning

Last synced: 5 days ago
JSON representation

📒《统计学习方法-李航: 笔记-从原理到实现,基于R语言》200页PDF,各种手推公式细节讲解,R语言实现. 🎉🎉

Awesome Lists containing this project

README

        

![image](https://github.com/DefTruth/statistic-learning-R-note/assets/31974251/07297b6a-d94c-4db0-aaef-8132071c94cb)








## News 👇👇
Most of my time now is focused on **LLM/VLM** Inference. Please check 📖[Awesome-LLM-Inference](https://github.com/DefTruth/Awesome-LLM-Inference) ![](https://img.shields.io/github/stars/DefTruth/Awesome-LLM-Inference.svg?style=social), 📖[Awesome-SD-Inference](https://github.com/DefTruth/Awesome-SD-Inference) ![](https://img.shields.io/github/stars/DefTruth/Awesome-SD-Inference.svg?style=social) and 📖[CUDA-Learn-Notes](https://github.com/DefTruth/CUDA-Learn-Notes) ![](https://img.shields.io/github/stars/DefTruth/CUDA-Learn-Notes.svg?style=social) for more details.

## 📒Introduction
《统计学习方法-李航: 笔记-从原理到实现》 这是一份非常详细的学习笔记,200页,各种手推公式细节讲解,整理成PDF,有详细的目录,可结合《统计学习方法》提高学习效率。如果觉得有用,不妨给个🌟Star支持一下吧~

## ©️Citations

```BibTeX
@misc{statistic-learning-R-note@2019,
title={statistic-learning-R-note: A detail note book of statistic-learning with R codes},
url={https://github.com/DefTruth/statistic-learning-R-note},
note={Open-source software available at https://github.com/DefTruth/statistic-learning-R-note},
author={DefTruth},
year={2019}
}
```

## 🎉Download PDFs
- [李航《统计学习方法》笔记--从原理到实现:基于R.pdf 👆🏻<点击下载!>](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
```shell
wget https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf
```

## 📖Contents

![image](https://github.com/DefTruth/statistic-learning-R-note/assets/31974251/561384a1-fbc3-40ed-af62-98268904f387)

- 第一章 统计学习方法概述
- [1.6.2 泛化误差上界(P16-P17)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [1.4.2 过拟合与模型选择(P11)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第二章 感知机
- [2.3.1 感知机算法的原始形式](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [2.3.2 算法的收敛性(Novikoff 定理)(P31-P33)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [2.3.3 感知机学习算法的对偶形式(P33-P34)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [2.3.1 感知机算法的原始形式(P28-P29)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [2.3.3 感知机学习算法的对偶形式(P33-P34)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第三章 K 近邻法
- [3.2.2 距离度量(P39)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [3.3.1 构造kd 树(P41-P42)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第四章 朴素贝叶斯算法
- [4.1.1 基本方法(P47-P48)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [4.1.2 后验概率最大化的含义(P48-49)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [4.2.1 极大似然估计(P49)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [4.2.2 学习与分类算法(P50-51)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第五章 决策树
- [5.2.2 信息增益(P60-P61)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [5.2.3 信息增益比(P63)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [5.3.1 ID3 算法/C4.5 算法(P63-P65)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [5.4 决策树的剪枝(P65-P67)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [5.5.1 CART 生成(P68-P71)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [5.5.2 CART 剪枝(P72-P73)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第六章 逻辑斯蒂回归与最大熵模型
- [6.1.3 逻辑斯蒂回归模型的参数估计(P79)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [6.2.3 最大熵模型的学习(P83-P85)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [6.2.4 极大似然估计(P87)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [6.3.1 改进的迭代尺度算法(P89-P91)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第七章 支持向量机
- [7.1.3 间隔最大化(P101)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [7.1.4 学习的对偶算法(P104)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [7.2.3 支持向量(P113)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [7.4 序列最小最优化算法(P126)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第八章 提升方法
- [8.1.2 Adaboost 算法(P139)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [8.2 AdaBoost 算法的训练误差分析(P142-P145)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [8.3.2 前向分步算法与 AdaBoost(P145-P146)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [8.4.3 梯度提升(P151)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [8.1.3 AdaBoost 的例子(P140)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第九章 EM 算法及其推广
- [9.2 EM 算法的收敛性(P161)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [9.3.1 高斯混合模型(P163)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [9.4 EM 算法的推广(P167)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [9.3.1 高斯混合模型的 EM 算法(165)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 第十章 隐马尔可夫模型
- [10.2.2 前向算法(P175-P176)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.2.3 后向算法(P178-P179)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.4.2 维特比算法(P185)]()
- [10.2.4 一些概率与期望值的计算(P179-P180)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.2.2 前向算法(P175-P177)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.2.3 后向算法(P178)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.2.4 一些概率与期望值的计算(P179-P178)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.3.1 监督学习方法(P180)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.3.2 Baum-Welch 算法(P181-P184)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.4.1 近似算法(P184)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [10.4.2 维特比算法(P185-P186)](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- 十一章 条件随机场
- 参考文献
- [附录 1 例 1.1 的 R 实现/训练误差与预测误差的对比](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 2 线性可分/不可分感知机的 R 实现 ](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 3 离散特征的 2 维平衡 kd 树 R 代码 ](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 4 离散特征的朴素贝叶斯法 R 代码](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 5 决策树的实现的 R 代码](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 6 逻辑斯蒂回归及最大熵模型的 R 实现](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 7 基于 SMO 算法的支持向量机的 R 实现](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 8 提升算法的 R 代码](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 9 EM 算法的 R 实现](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)
- [附录 10 HMM 模型的 R 实现](https://github.com/DefTruth/statistic-learning-R-note/releases/download/v0.1.0/statistic.learning.R.Note.v0.1.0.pdf)

## ©️License

GNU General Public License v3.0

## 🎉Contribute

🌟如果觉得有用,不妨给个🌟👆🏻Star支持一下吧~


v02




Star History Chart