https://github.com/delsner/dl-exploration
  
  
    Deep learning exploration 
    https://github.com/delsner/dl-exploration
  
        Last synced: 8 months ago 
        JSON representation
    
Deep learning exploration
- Host: GitHub
- URL: https://github.com/delsner/dl-exploration
- Owner: delsner
- License: mit
- Created: 2017-09-30T20:41:10.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2017-10-04T14:24:34.000Z (about 8 years ago)
- Last Synced: 2025-01-10T09:41:20.911Z (10 months ago)
- Language: Jupyter Notebook
- Size: 18.6 MB
- Stars: 3
- Watchers: 1
- Forks: 0
- Open Issues: 0
- 
            Metadata Files:
            - Readme: README.md
- License: LICENSE
 
Awesome Lists containing this project
README
          dl-exploration
==============================
An exploration through deep learning models.
Project Organization
------------
    ├── LICENSE
    ├── Makefile           <- Makefile with commands like `make data` or `make train`
    ├── README.md          <- The top-level README for developers using this project.
    ├── data
    │   ├── external       <- Data from third party sources.
    │   ├── interim        <- Intermediate data that has been transformed.
    │   ├── processed      <- The final, canonical data sets for modeling.
    │   └── raw            <- The original, immutable data dump.
    │
    ├── docs               <- A default Sphinx project; see sphinx-doc.org for details
    │
    ├── models             <- Trained and serialized models, model predictions, or model summaries
    │
    ├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
    │                         the creator's initials, and a short `-` delimited description, e.g.
    │                         `1.0-jqp-initial-data-exploration`.
    │
    ├── references         <- Data dictionaries, manuals, and all other explanatory materials.
    │
    ├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
    │   └── figures        <- Generated graphics and figures to be used in reporting
    │
    ├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
    │                         generated with `pip freeze > requirements.txt`
    │
    ├── src                <- Source code for use in this project.
    │   ├── __init__.py    <- Makes src a Python module
    │   │
    │   ├── data           <- Scripts to download or generate data
    │   │   └── make_dataset.py
    │   │
    │   ├── features       <- Scripts to turn raw data into features for modeling
    │   │   └── build_features.py
    │   │
    │   ├── models         <- Scripts to train models and then use trained models to make
    │   │   │                 predictions
    │   │   ├── predict_model.py
    │   │   └── train_model.py
    │   │
    │   └── visualization  <- Scripts to create exploratory and results oriented visualizations
    │       └── visualize.py
    │
    └── tox.ini            <- tox file with settings for running tox; see tox.testrun.org
--------
Project based on the cookiecutter data science project template. #cookiecutterdatascience