Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dennisbakhuis/pigeonXT

🐦 Quickly annotate data from the comfort of your Jupyter notebook
https://github.com/dennisbakhuis/pigeonXT

Last synced: 7 days ago
JSON representation

🐦 Quickly annotate data from the comfort of your Jupyter notebook

Awesome Lists containing this project

README

        

# 🐦 pigeonXT - Quickly annotate data in Jupyter Lab
PigeonXT is an extention to the original [Pigeon](https://github.com/agermanidis/pigeon), created by [Anastasis Germanidis](https://pypi.org/user/agermanidis/).
PigeonXT is a simple widget that lets you quickly annotate a dataset of
unlabeled examples from the comfort of your Jupyter notebook.

PigeonXT currently support the following annotation tasks:
- binary / multi-class classification
- multi-label classification
- regression tasks
- captioning tasks

Anything that can be displayed on Jupyter
(text, images, audio, graphs, etc.) can be displayed by pigeon
by providing the appropriate `display_fn` argument.

Additionally, custom hooks can be attached to each row update (`example_process_fn`),
or when the annotating task is complete(`final_process_fn`).

There is a full blog post on the usage of PigeonXT on [Towards Data Science](https://towardsdatascience.com/quickly-label-data-in-jupyter-lab-999e7e455e9e).

### Contributors
- Anastasis Germanidis
- Dennis Bakhuis
- Ritesh Agrawal
- Deepak Tunuguntla
- Bram van Es

## Installation
PigeonXT obviously needs a Jupyter Lab environment. Futhermore, it requires ipywidgets.
The widget itself can be installed using pip:
```bash
pip install pigeonXT-jupyter
```

Currently, it is much easier to install due to Jupyterlab 3:
To run the provided examples in a new environment using Conda:
```bash
conda create --name pigeon python=3.9
conda activate pigeon
pip install numpy pandas jupyterlab ipywidgets pigeonXT-jupyter
```

For an older Jupyterlab or any other trouble, please try the old method:
```bash
conda create --name pigeon python=3.7
conda activate pigeon
conda install nodejs
pip install numpy pandas jupyterlab ipywidgets
jupyter nbextension enable --py widgetsnbextension
jupyter labextension install @jupyter-widgets/jupyterlab-manager

pip install pigeonXT-jupyter
```

Starting Jupyter Lab environment:
```bash
jupyter lab
```

### Development environment
I have moved the development environment to Poetry. To create an identical environment use:
```bash
conda env create -f environment.yml
conda activate pigeonxt
poetry install
pre-commit install
```

## Examples
Examples are also provided in the accompanying notebook.

### Binary or multi-class text classification
Code:
```python
import pandas as pd
import pigeonXT as pixt

annotations = pixt.annotate(
['I love this movie', 'I was really disappointed by the book'],
options=['positive', 'negative', 'inbetween']
)
```

Preview:
![Jupyter notebook multi-class classification](/assets/multiclassexample.png)

### Multi-label text classification
Code:
```python
import pandas as pd
import pigeonXT as pixt

df = pd.DataFrame([
{'example': 'Star wars'},
{'example': 'The Positively True Adventures of the Alleged Texas Cheerleader-Murdering Mom'},
{'example': 'Eternal Sunshine of the Spotless Mind'},
{'example': 'Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb'},
{'example': 'Killer klowns from outer space'},
])

labels = ['Adventure', 'Romance', 'Fantasy', 'Science fiction', 'Horror', 'Thriller']

annotations = pixt.annotate(
df,
options=labels,
task_type='multilabel-classification',
buttons_in_a_row=3,
reset_buttons_after_click=True,
include_next=True,
include_back=True,
)
```

Preview:
![Jupyter notebook multi-label classification](/assets/multilabelexample.png)

### Image classification
Code:
```python
import pandas as pd
import pigeonXT as pixt

from IPython.display import display, Image

annotations = pixt.annotate(
['assets/img_example1.jpg', 'assets/img_example2.jpg'],
options=['cat', 'dog', 'horse'],
display_fn=lambda filename: display(Image(filename))
)
```

Preview:
![Jupyter notebook multi-label classification](/assets/imagelabelexample.png)

### Audio classification
Code:
```python
import pandas as pd
import pigeonXT as pixt

from IPython.display import Audio

annotations = pixt.annotate(
['assets/audio_1.mp3', 'assets/audio_2.mp3'],
task_type='regression',
options=(1,5,1),
display_fn=lambda filename: display(Audio(filename, autoplay=True))
)

annotations
```

Preview:
![Jupyter notebook multi-label classification](/assets/audiolabelexample.png)

### multi-label text classification with custom hooks
Code:
```python
import pandas as pd
import numpy as np

from pathlib import Path
from pigeonXT import annotate

df = pd.DataFrame([
{'example': 'Star wars'},
{'example': 'The Positively True Adventures of the Alleged Texas Cheerleader-Murdering Mom'},
{'example': 'Eternal Sunshine of the Spotless Mind'},
{'example': 'Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb'},
{'example': 'Killer klowns from outer space'},
])

labels = ['Adventure', 'Romance', 'Fantasy', 'Science fiction', 'Horror', 'Thriller']
shortLabels = ['A', 'R', 'F', 'SF', 'H', 'T']

df.to_csv('inputtestdata.csv', index=False)

def setLabels(labels, numClasses):
row = np.zeros([numClasses], dtype=np.uint8)
row[labels] = 1
return row

def labelPortion(
inputFile,
labels = ['yes', 'no'],
outputFile='output.csv',
portionSize=2,
textColumn='example',
shortLabels=None,
):
if shortLabels == None:
shortLabels = labels

out = Path(outputFile)
if out.exists():
outdf = pd.read_csv(out)
currentId = outdf.index.max() + 1
else:
currentId = 0

indf = pd.read_csv(inputFile)
examplesInFile = len(indf)
indf = indf.loc[currentId:currentId + portionSize - 1]
actualPortionSize = len(indf)
print(f'{currentId + 1} - {currentId + actualPortionSize} of {examplesInFile}')
sentences = indf[textColumn].tolist()

for label in shortLabels:
indf[label] = None

def updateRow(example, selectedLabels):
print(example, selectedLabels)
labs = setLabels([labels.index(y) for y in selectedLabels], len(labels))
indf.loc[indf[textColumn] == example, shortLabels] = labs

def finalProcessing(annotations):
if out.exists():
prevdata = pd.read_csv(out)
outdata = pd.concat([prevdata, indf]).reset_index(drop=True)
else:
outdata = indf.copy()
outdata.to_csv(out, index=False)

annotated = annotate(
sentences,
options=labels,
task_type='multilabel-classification',
buttons_in_a_row=3,
reset_buttons_after_click=True,
include_next=False,
example_process_fn=updateRow,
final_process_fn=finalProcessing
)
return indf

def getAnnotationsCountPerlabel(annotations, shortLabels):

countPerLabel = pd.DataFrame(columns=shortLabels, index=['count'])

for label in shortLabels:
countPerLabel.loc['count', label] = len(annotations.loc[annotations[label] == 1.0])

return countPerLabel

def getAnnotationsCountPerlabel(annotations, shortLabels):

countPerLabel = pd.DataFrame(columns=shortLabels, index=['count'])

for label in shortLabels:
countPerLabel.loc['count', label] = len(annotations.loc[annotations[label] == 1.0])

return countPerLabel

annotations = labelPortion('inputtestdata.csv',
labels=labels,
shortLabels= shortLabels)

# counts per label
getAnnotationsCountPerlabel(annotations, shortLabels)
```

Preview:
![Jupyter notebook multi-label classification](/assets/pigeonhookfunctions.png)

The complete and runnable examples are available in the provided Notebook.