Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/denniszielke/discover-ai
Demos for the Discovery Hour GenerativeAI on Azure
https://github.com/denniszielke/discover-ai
azure demos generative-ai openai
Last synced: 3 months ago
JSON representation
Demos for the Discovery Hour GenerativeAI on Azure
- Host: GitHub
- URL: https://github.com/denniszielke/discover-ai
- Owner: denniszielke
- License: mit
- Created: 2024-06-24T07:17:57.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-10-31T18:25:00.000Z (3 months ago)
- Last Synced: 2024-10-31T19:24:59.990Z (3 months ago)
- Topics: azure, demos, generative-ai, openai
- Language: Jupyter Notebook
- Homepage:
- Size: 5.65 MB
- Stars: 3
- Watchers: 1
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Discover Generative AI Apps on Azure
This repository contains demos and templates for building intelligent Apps using OpenAI on Azure.Regions that this deployment can be executed:
- uksouth
- swedencentral
- canadaeast
- australiaeast## Inventory
The following scenarios are implemented in this repository:
| Name | Description | Technology |
| :-- | :--| :-- |
| [Prompt Engineering](./src/01-prompting/basic.ipynb)| Basic prompt engineering examples | Azure Prompt Flow |
| [Embeddings](./src/02-embeddings/similarity.ipynb)| Learning about embedding models for text and images | Azure OpenAI, Azure Computer Vision |
| [Vector Search](./src/03-rag/rag-ai-search.ipynb)| Learning about low level retrieval augmented generation | Azure OpenAI, Azure AI Search |
| [Orchestrated Vector Search](./src/03-rag/app.py)| Learning about retrieval augmented generation with Orchestration | Azure OpenAI, Azure AI Search, LangChain, Streamlit |
| [Persisting Chat Memory](./src/04-orchestration-lc/chat-conversation.ipynb)| Learning about persisting chat messages | Azure OpenAI, Azure AI Search, LangChain, Azure CosmosDB |
| [Tracing Language Models](./src/04-orchestration-lc/tracing.ipynb)| Learning about tracing language model invocations | Azure OpenAI, LangChain, Azure PromptFlow |
| [Tracing Chat application](./src/04-orchestration-lc/app.py)| Learning about tracing a running application | Azure OpenAI, LangChain, Azure PromptFlow, Streamlit, Azure AI Search |
| [Function Calling](./src/05-tools/tools-openai.ipynb)| Learning about using tools from a model | Azure OpenAI, Azure PromptFlow |
| [Create picture generation](./src/06-agents-creative-ag/autogen-gtp4o.ipynb)| Learning about different models to collaborate for better picutres | Azure OpenAI, Autogen |
| [Orchestrating tools](./src/05-tools/app.py)| Learning about orchestrating tools from an application | Azure OpenAI, Azure PromptFlow, LangChain |
| [Orchestrating tools](./src/05-agents-coding-lg/app.py)| Learning about models generating better code | Azure OpenAI, Azure PromptFlow, LangChain |
| [Orchestrating multiple tools](./src/05-multi-tools-tag-lc/app.py)| Learning about multiple orchestrating tools from an application | Azure OpenAI, Azure PromptFlow, LangChain |
| [Agentic RAG](./src/06-agents-lg/app.py)| Learning about using agentic retrieval augmented generation | Azure OpenAI, Azure PromptFlow, LangChain, Langgraph |
| [Async Agents Tools](./src/06-agents-tools-li/app.py)| Learning about using agentic async tools | Azure OpenAI, Azure PromptFlow, Lama Index |
| [Distributed Async Agents Tools](./src/06-agents-kafka-li/app.py)| Learning about using agentic tools in a distributed system | Azure OpenAI, Azure PromptFlow, Lama Index, Kafka |## Quickstart & Infrastructure setup
The following lines of code will connect your Codespace az cli and azd cli to the right Azure subscription:
```
az loginazd auth login
```
Now deploy the infrastructure components with azure cli
```
azd up
```Get the values for some env variables
```
azd env get-values | grep AZURE_ENV_NAME
source <(azd env get-values)
```Last but not least: deploy a dummy container in Azure Container Apps.
```
bash ./azd-hooks/deploy.sh 03-rag $AZURE_ENV_NAME```
## Start locally
```
python -m streamlit run app.py --server.port=8000
```## Deploy resources for Chapter 03
Run the following script
```
azd env get-values | grep AZURE_ENV_NAME
source <(azd env get-values | grep AZURE_ENV_NAME)
bash ./azd-hooks/deploy.sh 06-agents-reports-lg $AZURE_ENV_NAME
```All the other chapters work the same.
### Configure prompt flow tracing
https://microsoft.github.io/promptflow/reference/pf-command-reference.html