Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/denpalrius/sports_action_recognition
A comparative study of ViViT, CNN-GRU sequence models for video action recognition using the UCF101 dataset
https://github.com/denpalrius/sports_action_recognition
classification-models cnn resnet rnn video-vision-transformer vision-transfor vivit
Last synced: about 12 hours ago
JSON representation
A comparative study of ViViT, CNN-GRU sequence models for video action recognition using the UCF101 dataset
- Host: GitHub
- URL: https://github.com/denpalrius/sports_action_recognition
- Owner: denpalrius
- Created: 2024-11-07T00:31:09.000Z (2 months ago)
- Default Branch: main
- Last Pushed: 2024-11-30T06:52:03.000Z (about 1 month ago)
- Last Synced: 2024-11-30T07:34:33.409Z (about 1 month ago)
- Topics: classification-models, cnn, resnet, rnn, video-vision-transformer, vision-transfor, vivit
- Language: Jupyter Notebook
- Homepage:
- Size: 79.4 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.MD
Awesome Lists containing this project
README
# Temporal Sequence Modeling for Sports Action Recognition
This project focuses on fine-grained sports action recognition using two main architectures:
1. **CNN-based Sequence Models**: These models combine CNNs for feature extraction with RNNs(GRU layers) for temporal sequence modeling:
- **VGG19**
- **InceptionV3**
- **InceptionV4-ResNet (hybrid model)**
- **EfficientNetB4**2. **ViViT (Video Vision Transformer)**: A pure transformer-based approach for end-to-end video classification, capturing both spatial and temporal features.
## Model Architectures
### 1. CNN-based Sequence Models
- **Feature Extractors**: VGG19, InceptionV3, InceptionV4-ResNet, EfficientNetB4
- **Temporal Model**: GRU layers### 2. ViViT Model
- Transformer-based model for video classification
- Spatiotemporal attention and tubelet embedding## Evaluation
Each model is evaluated using:
- Accuracy, Precision, Recall, F1-Score
- Training/validation curves
- Confusion matrix## Acknowledgments
- Dr. Lina Chato
- UCF101 dataset
- TensorFlow team
- All the cited authors