Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/determined-ai/determined-examples
Example ML projects that use the Determined library.
https://github.com/determined-ai/determined-examples
deep-learning distributed-training hyperparameter-tuning keras machine-learning ml-infrastructure pytorch tensorflow
Last synced: 2 months ago
JSON representation
Example ML projects that use the Determined library.
- Host: GitHub
- URL: https://github.com/determined-ai/determined-examples
- Owner: determined-ai
- License: apache-2.0
- Created: 2020-10-06T23:06:47.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2024-09-11T17:59:51.000Z (5 months ago)
- Last Synced: 2024-09-12T03:55:51.327Z (4 months ago)
- Topics: deep-learning, distributed-training, hyperparameter-tuning, keras, machine-learning, ml-infrastructure, pytorch, tensorflow
- Language: Python
- Homepage: https://github.com/determined-ai/determined
- Size: 2.73 MB
- Stars: 14
- Watchers: 31
- Forks: 1
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Determined As-is Examples
This repository contains a variety of Determined examples that are not actively maintained by the Determined team.
## Tutorials
| Example | Dataset | Framework |
|:-------------------------------------------------------------:|:----------------:|:---------------------:|
| [fashion\_mnist\_tf\_keras](tutorials/fashion_mnist_tf_keras) | Fashion MNIST | TensorFlow (tf.keras) |## Blog posts
| Example | Description |
|:---------------------------------------:|:----------------------------------------------------------------------------:|
| [Activation Memory: Part 2](blog/act-mem-2) | Measuring activation memory in PyTorch. |
| [LLM Finetuning](blog/llm-finetuning) | Finetuning TinyLlama-1.1B on Text-to-SQL. |
| [LLM Finetuning 2](blog/llm-finetuning-2) | Finetuning Mistral-7B on Text-to-SQL using LoRA and DeepSpeed. |
| [LLM Finetuning 3](blog/llm-finetuning-3) | Finetuning Gemma-2B using DPO. |
| [LoRA Parameters](blog/lora-parameters) | Finding the best LoRA parameters. |
| [Python SDK demo](blog/python_sdk_demo) | Example usage of the Determined Python SDK to run and administer experiments. |
| [Tensor Parallelism](blog/tp) | Profiling tensor parallelism in PyTorch. |## Computer Vision
| Example | Dataset | Framework |
|:----------------------------------------------------------------------------:|:----------------------------:|:----------------------------------------:|
| [cifar10\_pytorch](computer_vision/cifar10_pytorch) | CIFAR-10 | PyTorch |
| [cifar10\_pytorch\_inference](computer_vision/cifar10_pytorch_inference) | CIFAR-10 | PyTorch |
| [cifar10\_tf\_keras](computer_vision/cifar10_tf_keras) | CIFAR-10 | TensorFlow (tf.keras) |
| [fasterrcnn\_coco\_pytorch](computer_vision/fasterrcnn_coco_pytorch) | Penn-Fudan Dataset | PyTorch |
| [mmdetection](model_hub/mmdetection) | COCO | PyTorch |
| [detr\_coco\_pytorch](computer_vision/detr_coco_pytorch) | COCO | PyTorch |
| [deformabledetr\_coco\_pytorch](computer_vision/deformabledetr_coco_pytorch) | COCO | PyTorch |
| [iris\_tf\_keras](computer_vision/iris_tf_keras) | Iris Dataset | TensorFlow (tf.keras) |
| [unets\_tf\_keras](computer_vision/unets_tf_keras) | Oxford-IIIT Pet Dataset | TensorFlow (tf.keras) |
| [efficientdet\_pytorch](computer_vision/efficientdet_pytorch) | COCO | PyTorch |
| [byol\_pytorch](computer_vision/byol_pytorch) | CIFAR-10 / STL-10 / ImageNet | PyTorch |
| [deepspeed\_cifar10_cpu_offloading](deepspeed/cifar10_cpu_offloading) | CIFAR-10 | PyTorch (DeepSpeed) |## Natural Language Processing (NLP)
| Example | Dataset | Framework |
|:--------------------------------------------------:|:----------:|:---------:|
| [albert\_squad\_pytorch](nlp/albert_squad_pytorch) | SQuAD | PyTorch |
| [bert\_glue\_pytorch](nlp/bert_glue_pytorch) | GLUE | PyTorch |
| [word\_language\_model](nlp/word_language_model) | WikiText-2 | PyTorch |## HP Search Benchmarks
| Example | Dataset | Framework |
|:-------------------------------------------------------------------------------:|:---------------------:|:---------:|
| [darts\_cifar10\_pytorch](hp_search_benchmarks/darts_cifar10_pytorch) | CIFAR-10 | PyTorch |
| [darts\_penntreebank\_pytorch](hp_search_benchmarks/darts_penntreebank_pytorch) | Penn Treebank Dataset | PyTorch |## Neural Architecture Search (NAS)
| Example | Dataset | Framework |
|:---------------------------------:|:-------:|:---------:|
| [gaea\_pytorch](nas/gaea_pytorch) | DARTS | PyTorch |## Meta Learning
| Example | Dataset | Framework |
|:----------------------------------------------------------------------:|:--------:|:---------:|
| [protonet\_omniglot\_pytorch](meta_learning/protonet_omniglot_pytorch) | Omniglot | PyTorch |## Generative Adversarial Networks (GAN)
| Example | Dataset | Framework |
|:----------------------------------------------|:----------------:|:---------------------:|
| [dc\_gan\_tf\_keras](gan/dcgan_tf_keras) | MNIST | TensorFlow (tf.keras) |
| [gan\_mnist\_pytorch](gan/gan_mnist_pytorch) | MNIST | PyTorch |
| [deepspeed\_dcgan](deepspeed/deepspeed_dcgan) | MNIST / CIFAR-10 | PyTorch (DeepSpeed) |
| [pix2pix\_tf\_keras](gan/pix2pix_tf_keras) | pix2pix | TensorFlow (tf.keras) |
| [cyclegan](gan/cyclegan) | monet2photo | PyTorch |## Custom Reducers
| Example | Dataset | Framework |
|:--------------------------------------------------------------------------:|:-------:|:----------:|
| [custom\_reducers\_mnist\_pytorch](features/custom_reducers_mnist_pytorch) | MNIST | PyTorch |## HP Search Constraints
| Example | Dataset | Framework |
|:------------------------------------------------------------------------:|:-------:|:----------:|
| [hp\_constraints\_mnist\_pytorch](features/hp_constraints_mnist_pytorch) | MNIST | PyTorch |## Custom Search Method
| Example | Dataset | Framework |
|:------------------------------------------------------------------------:|:-------:|:----------:|
| [asha\_search\_method](custom_search_method/asha_search_method) | MNIST | PyTorch |## Fully Sharded Data Parallel
| Example | Framework |
|:------------------------------------------------------------------------:|:----------:|
| [minimal\_fsdp](fsdp/minimal_fsdp) | PyTorch |