Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/determined-ai/determined-examples

Example ML projects that use the Determined library.
https://github.com/determined-ai/determined-examples

deep-learning distributed-training hyperparameter-tuning keras machine-learning ml-infrastructure pytorch tensorflow

Last synced: 2 months ago
JSON representation

Example ML projects that use the Determined library.

Awesome Lists containing this project

README

        

# Determined As-is Examples

This repository contains a variety of Determined examples that are not actively maintained by the Determined team.

## Tutorials

| Example | Dataset | Framework |
|:-------------------------------------------------------------:|:----------------:|:---------------------:|
| [fashion\_mnist\_tf\_keras](tutorials/fashion_mnist_tf_keras) | Fashion MNIST | TensorFlow (tf.keras) |

## Blog posts
| Example | Description |
|:---------------------------------------:|:----------------------------------------------------------------------------:|
| [Activation Memory: Part 2](blog/act-mem-2) | Measuring activation memory in PyTorch. |
| [LLM Finetuning](blog/llm-finetuning) | Finetuning TinyLlama-1.1B on Text-to-SQL. |
| [LLM Finetuning 2](blog/llm-finetuning-2) | Finetuning Mistral-7B on Text-to-SQL using LoRA and DeepSpeed. |
| [LLM Finetuning 3](blog/llm-finetuning-3) | Finetuning Gemma-2B using DPO. |
| [LoRA Parameters](blog/lora-parameters) | Finding the best LoRA parameters. |
| [Python SDK demo](blog/python_sdk_demo) | Example usage of the Determined Python SDK to run and administer experiments. |
| [Tensor Parallelism](blog/tp) | Profiling tensor parallelism in PyTorch. |

## Computer Vision

| Example | Dataset | Framework |
|:----------------------------------------------------------------------------:|:----------------------------:|:----------------------------------------:|
| [cifar10\_pytorch](computer_vision/cifar10_pytorch) | CIFAR-10 | PyTorch |
| [cifar10\_pytorch\_inference](computer_vision/cifar10_pytorch_inference) | CIFAR-10 | PyTorch |
| [cifar10\_tf\_keras](computer_vision/cifar10_tf_keras) | CIFAR-10 | TensorFlow (tf.keras) |
| [fasterrcnn\_coco\_pytorch](computer_vision/fasterrcnn_coco_pytorch) | Penn-Fudan Dataset | PyTorch |
| [mmdetection](model_hub/mmdetection) | COCO | PyTorch |
| [detr\_coco\_pytorch](computer_vision/detr_coco_pytorch) | COCO | PyTorch |
| [deformabledetr\_coco\_pytorch](computer_vision/deformabledetr_coco_pytorch) | COCO | PyTorch |
| [iris\_tf\_keras](computer_vision/iris_tf_keras) | Iris Dataset | TensorFlow (tf.keras) |
| [unets\_tf\_keras](computer_vision/unets_tf_keras) | Oxford-IIIT Pet Dataset | TensorFlow (tf.keras) |
| [efficientdet\_pytorch](computer_vision/efficientdet_pytorch) | COCO | PyTorch |
| [byol\_pytorch](computer_vision/byol_pytorch) | CIFAR-10 / STL-10 / ImageNet | PyTorch |
| [deepspeed\_cifar10_cpu_offloading](deepspeed/cifar10_cpu_offloading) | CIFAR-10 | PyTorch (DeepSpeed) |

## Natural Language Processing (NLP)

| Example | Dataset | Framework |
|:--------------------------------------------------:|:----------:|:---------:|
| [albert\_squad\_pytorch](nlp/albert_squad_pytorch) | SQuAD | PyTorch |
| [bert\_glue\_pytorch](nlp/bert_glue_pytorch) | GLUE | PyTorch |
| [word\_language\_model](nlp/word_language_model) | WikiText-2 | PyTorch |

## HP Search Benchmarks

| Example | Dataset | Framework |
|:-------------------------------------------------------------------------------:|:---------------------:|:---------:|
| [darts\_cifar10\_pytorch](hp_search_benchmarks/darts_cifar10_pytorch) | CIFAR-10 | PyTorch |
| [darts\_penntreebank\_pytorch](hp_search_benchmarks/darts_penntreebank_pytorch) | Penn Treebank Dataset | PyTorch |

## Neural Architecture Search (NAS)

| Example | Dataset | Framework |
|:---------------------------------:|:-------:|:---------:|
| [gaea\_pytorch](nas/gaea_pytorch) | DARTS | PyTorch |

## Meta Learning

| Example | Dataset | Framework |
|:----------------------------------------------------------------------:|:--------:|:---------:|
| [protonet\_omniglot\_pytorch](meta_learning/protonet_omniglot_pytorch) | Omniglot | PyTorch |

## Generative Adversarial Networks (GAN)

| Example | Dataset | Framework |
|:----------------------------------------------|:----------------:|:---------------------:|
| [dc\_gan\_tf\_keras](gan/dcgan_tf_keras) | MNIST | TensorFlow (tf.keras) |
| [gan\_mnist\_pytorch](gan/gan_mnist_pytorch) | MNIST | PyTorch |
| [deepspeed\_dcgan](deepspeed/deepspeed_dcgan) | MNIST / CIFAR-10 | PyTorch (DeepSpeed) |
| [pix2pix\_tf\_keras](gan/pix2pix_tf_keras) | pix2pix | TensorFlow (tf.keras) |
| [cyclegan](gan/cyclegan) | monet2photo | PyTorch |

## Custom Reducers

| Example | Dataset | Framework |
|:--------------------------------------------------------------------------:|:-------:|:----------:|
| [custom\_reducers\_mnist\_pytorch](features/custom_reducers_mnist_pytorch) | MNIST | PyTorch |

## HP Search Constraints

| Example | Dataset | Framework |
|:------------------------------------------------------------------------:|:-------:|:----------:|
| [hp\_constraints\_mnist\_pytorch](features/hp_constraints_mnist_pytorch) | MNIST | PyTorch |

## Custom Search Method

| Example | Dataset | Framework |
|:------------------------------------------------------------------------:|:-------:|:----------:|
| [asha\_search\_method](custom_search_method/asha_search_method) | MNIST | PyTorch |

## Fully Sharded Data Parallel

| Example | Framework |
|:------------------------------------------------------------------------:|:----------:|
| [minimal\_fsdp](fsdp/minimal_fsdp) | PyTorch |