Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/devkihyun/cvae-tensorflow
TensorFlow implementation of 'Conditional Variational Autoencoder(CVAE)'
https://github.com/devkihyun/cvae-tensorflow
Last synced: 6 days ago
JSON representation
TensorFlow implementation of 'Conditional Variational Autoencoder(CVAE)'
- Host: GitHub
- URL: https://github.com/devkihyun/cvae-tensorflow
- Owner: DevKiHyun
- Created: 2018-11-13T00:30:23.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2018-11-14T02:41:31.000Z (about 6 years ago)
- Last Synced: 2024-07-25T11:10:35.369Z (5 months ago)
- Language: Python
- Size: 283 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# CVAE-Tensorflow (2018/11/12)
## Introduction
I implement a tensorflow model of a Conditional Variational Autoencoder
- I use mnist dataset as training dataset.## Environment
- Ubuntu 16.04
- Python 3.5## Depenency
- Numpy
- matplotlib## Files
- cvae.py : Model definition.
- main.py : Execute training and pass the default value.
- train.py : Training code.## How to use
### Training
```shell
python main.py# Default args: training_epoch = 200, z_dim = 20, batch_size = 128, learning_rate = 0.0001
# You can change args: training_epoch = 300, z_dim = 40 batch_size = 64, learning_rate = 0.0005
python main.py --training_epoch 300 --z_dim 40 --batch_size 64 --learning_rate 0.0005
```## Result
### Reconstruction![Alt Text](https://github.com/DevKiHyun/CVAE-Tensorflow/blob/master/result/reconstruction.png)
### Generation
| Give labels | 0, 1, 2, 3, 4, 9, 8, 7 |
| ------------- | ------------- |
| Generation | ![Alt Text](https://github.com/DevKiHyun/CVAE-Tensorflow/blob/master/result/generation.png) |### 2D-manifold
![Alt Text](https://github.com/DevKiHyun/CVAE-Tensorflow/blob/master/result/manifold.png)
### 2D-manifold walking
![Alt Text](https://github.com/DevKiHyun/CVAE-Tensorflow/blob/master/result/walking.png)
## Reference
[오토인코더의 모든것('All of autoencoder')](https://www.youtube.com/watch?v=o_peo6U7IRM&feature=youtu.be)[Tutorial on Variational Autoencoders](https://arxiv.org/abs/1606.05908)