https://github.com/devprnvk/realestateml
This Python program analyzes a dataset (HousePricePrediction.xlsx) containing information about house prices. It utilizes pandas for data manipulation, matplotlib for plotting, and seaborn for visualizing correlations and distributions.
https://github.com/devprnvk/realestateml
data-science data-visualization datasets houses npm plotting prediction-model seaborn
Last synced: 8 months ago
JSON representation
This Python program analyzes a dataset (HousePricePrediction.xlsx) containing information about house prices. It utilizes pandas for data manipulation, matplotlib for plotting, and seaborn for visualizing correlations and distributions.
- Host: GitHub
- URL: https://github.com/devprnvk/realestateml
- Owner: devprnvk
- Created: 2024-06-28T00:00:50.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-06-28T00:16:51.000Z (over 1 year ago)
- Last Synced: 2025-05-30T08:36:38.817Z (9 months ago)
- Topics: data-science, data-visualization, datasets, houses, npm, plotting, prediction-model, seaborn
- Language: Python
- Homepage:
- Size: 198 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# House Price Prediction Analysis
This Python program analyzes a dataset (`HousePricePrediction.xlsx`) containing information about house prices. It utilizes pandas for data manipulation, matplotlib for plotting, and seaborn for visualizing correlations and distributions.
## Features
- **Data Loading and Exploration**: Loads the dataset (`HousePricePrediction.xlsx`) using pandas and displays the first 5 records.
- **Numeric and Categorical Analysis**: Identifies numeric and categorical columns in the dataset and performs analysis accordingly.
- **Correlation Heatmap**: Plots a heatmap to visualize correlations among numeric features.
- **Unique Values and Distribution**: Displays the number of unique values and distribution plots for categorical features.
## Requirements
- Python 3.x
- pandas
- matplotlib
- seaborn
## Installation
1. Clone the repository:
''git clone https://github.com/your-username/house-price-prediction.git
2. Install the required dependencies:
pip install pandas matplotlib seaborn openpyxl
markdown
Copy code
## Usage
1. Navigate to the directory containing `analyze.py`.
2. Run the script:
python analyze.py
markdown
Copy code
This will execute the program and display visualizations in matplotlib and seaborn.
## Example Output
- **Correlation Heatmap**:

- **Unique Values of Categorical Features**:

- **Distribution of Categorical Features**:

## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Contributing
1. Fork the repository.
2. Create a new branch (`git checkout -b feature-new-analysis`).
3. Make changes and commit (`git commit -am 'Add new analysis feature'`).
4. Push to the branch (`git push origin feature-new-analysis`).
5. Create a new Pull Request.