https://github.com/dhi/watobs
WatObs - access water observation data
https://github.com/dhi/watobs
currents ocean water waves
Last synced: about 1 month ago
JSON representation
WatObs - access water observation data
- Host: GitHub
- URL: https://github.com/dhi/watobs
- Owner: DHI
- Created: 2022-04-12T12:25:50.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2024-10-31T06:56:54.000Z (7 months ago)
- Last Synced: 2025-04-20T11:18:05.190Z (about 1 month ago)
- Topics: currents, ocean, water, waves
- Language: Jupyter Notebook
- Homepage: https://dhi.github.io/watobs/
- Size: 6.72 MB
- Stars: 2
- Watchers: 3
- Forks: 2
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README

# WatObs: Access Water Observation Data
This Python package gives you convenient access to water observation data with a bring-your-own-api-key concept.
## Data overview
* DHI satellite [altimetry data](https://altimetry.dhigroup.com/purchase)
* Ocean Observations from [Danish Meteorological Institute](https://confluence.govcloud.dk/display/FDAPI/Danish+Meteorological+Institute+-+Open+Data)## Example notebooks
* [Altimetry_data](https://github.com/DHI/WatObs/blob/main/notebooks/Altimetry_data.ipynb)
* [DMI_observations](https://github.com/DHI/WatObs/blob/main/notebooks/DMI_observations.ipynb)## Satellite altimetry data
Altimetry data (water level, significant wave height and wind speed) obtained from satellites are very useful for validation of models as the data are available globally since 1985 and up to 12 hour before now.
DHI has an [altimetry portal](https://altimetry.dhigroup.com/purchase) with an [api](https://altimetry-shop-data-api.dhigroup.com/apidoc) where you can download the data.

### Example
Obtain all altimetry data within 100km from (lon, lat)=(2.9, 55.9) from October 2019.
```python
>>> from watobs import DHIAltimetryRepository
>>> repo = DHIAltimetryRepository(api_key)
>>> data = repo.get_altimetry_data(area="lon=2.9&lat=55.9&radius=100",
start_time="2019-10-1",
end_time="2019-11-1")
>>> data.df["longitude","latitude","significant_wave_height"].head()longitude latitude significant_wave_height
datetime
2019-10-01 01:53:30.689 3.780429 55.203699 1.942423
2019-10-01 01:53:31.633 3.770297 55.260700 1.892914
2019-10-01 01:53:32.576 3.760148 55.317701 1.838815
2019-10-01 01:53:33.519 3.749980 55.374701 1.930273
2019-10-01 01:53:34.463 3.739795 55.431700 1.952707
```