Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dhryougit/AFM


https://github.com/dhryougit/AFM

Last synced: 27 days ago
JSON representation

Awesome Lists containing this project

README

        

# Robust Image Denoising through Adversarial Frequency Mixup (2024 CVPR) [[paper]](https://openaccess.thecvf.com/content/CVPR2024/html/Ryou_Robust_Image_Denoising_through_Adversarial_Frequency_Mixup_CVPR_2024_paper.html)

### Installation
This implementation based on [BasicSR](https://github.com/xinntao/BasicSR) which is a open source toolbox for image/video restoration tasks and [NAFNet](https://github.com/megvii-research/NAFNet)

```python
python 3.8.8
pytorch 1.9.0
cuda 11.3
```

```
git clone https://github.com/dhryougit/AFM.git
cd AFM
pip install -r requirements.txt
python setup.py develop --no_cuda_ext
```

We used NVIDIA RTX A6000 D6 48GB for trianing our models.

### QuickStart
For training
```
python3 -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/train/DnCNN.yml --name=DnCNN-afm-b --afm_type=AFM_B --seed=10 --afm_rate=0.8 --afm_easy_rate=0.3 --launcher pytorch
```

### Dataset

Training dataset : [SIDD](https://abdokamel.github.io/sidd/#sidd-medium)

Evaludation datasets : [Poly](https://github.com/csjunxu/PolyU-Real-World-Noisy-Images-Dataset), [CC](https://github.com/csjunxu/MCWNNM-ICCV2017), HighISO, iPhone, Huawei.

Additioanl real-world noise datasets can be downloaded from "https://github.com/ZhaomingKong/Denoising-Comparison"

### Results and Pre-trained model

| Dataset | Poly |CC |HighISO |iPhone |Huawei | OOD Avg.|
|:----|:----|:----|:----|:----|:----|-----|
|PSRN| 37.75 | 36.84 | 39.17 | 40.65 | 38.39 | 38.56 |
|SSIM| 0.9804 | 0.9830 | 0.9801 | 0.9777 | 0.9683 | 0.9779 |

Pre-trained model of our Dncnn trained on AFM-B can be downloaded from (https://drive.google.com/file/d/1uPJP2zNc4ViFc1QU7TXGAwrFIEScBJvL/view?usp=sharing)