Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dimits-ts/llms_prompting_annotation
Practical Data Science assignments relating to LLMs, prompting and annotation tasks.
https://github.com/dimits-ts/llms_prompting_annotation
annotation chatgpt clustering embeddings llms prompt-engineering webscraping word2vec
Last synced: 6 days ago
JSON representation
Practical Data Science assignments relating to LLMs, prompting and annotation tasks.
- Host: GitHub
- URL: https://github.com/dimits-ts/llms_prompting_annotation
- Owner: dimits-ts
- Created: 2023-10-28T08:14:23.000Z (about 1 year ago)
- Default Branch: master
- Last Pushed: 2024-01-04T10:33:51.000Z (12 months ago)
- Last Synced: 2024-11-14T08:49:57.561Z (about 2 months ago)
- Topics: annotation, chatgpt, clustering, embeddings, llms, prompt-engineering, webscraping, word2vec
- Language: Jupyter Notebook
- Homepage:
- Size: 10.2 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# LLMs, Prompting, NLP and Annotation
This repository houses several Practical Data Science assignements relating to LLM Prompting (use cases, modern prompting techniques, fail conditions).
The repository is organized as follows:
1. [ChatGPT prompting fail cases](chatgpt/chatgpt-python-prompt.ipynb) where we explore two cases of ChatGPT code generation failing.
2. [LLM prompting for annotation](annotation/annotation.ipynb) where we leverage LLMs to help us in a difficult annotation task, which we then handle by using pandas.
3. [Annotation analysis](ann_stats/ann_stats.ipynb) where we analyze the clustering between different annotators.
4. [Secure-GPT](secure-gpt/SecureGPT_HW4.pptx) a group presentation for a new LLM use-case to make the internet safer - includes fake data generation for demonstration purposes.
5. [Webscraping](webscraping/scraping.ipynb) where we create a webscraper for a Greek gaming forum.
6. [Greek Embedding Plot](embedding-plot/plot.ipynb), in which we create an interquartile range for all the posts in a Greeklish2Greek dataset.
7. [Greek Embedding Creation](greek_embedding/greek_embeddings.ipynb) in which we create and test our own Greek Embeddings.