Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dingmyu/DAPN

A pytorch implementation of "Domain-Adaptive Few-Shot Learning"
https://github.com/dingmyu/DAPN

Last synced: 3 months ago
JSON representation

A pytorch implementation of "Domain-Adaptive Few-Shot Learning"

Awesome Lists containing this project

README

        

## Introduction

The framework is implemented and tested with Ubuntu 16.04, CUDA 8.0/9.0, Python 3, Pytorch 0.4/1.0/1.1, NVIDIA TITANX GPU.

## Requirements

- **Cuda & Cudnn & Python & Pytorch**

This project is tested with CUDA 8.0/9.0, Python 3, Pytorch 0.4/1.0, NVIDIA TITANX GPUs.

Please install proper CUDA and CUDNN version, and then install Anaconda3 and Pytorch. Almost all the packages we use are covered by Anaconda.

- **My settings**

```shell
source ~/anaconda3/bin/activate (python 3.6.5)
(base) pip list
torch 0.4.1
torchvision 0.2.2.post3
numpy 1.18.1
numpydoc 0.8.0
numba 0.42.0
opencv-python 4.0.0.21
```

## Data preparation

Download and unzip the datasets: **MiniImageNet, TieredImageNet, DomainNet**.

Here we provide the datasets of target domain in Google Drive, [miniImageNet](https://drive.google.com/file/d/1Yxzw2kJarXCV2tldKzXt6rlGqcLuv24W), [tieredImageNet](https://drive.google.com/file/d/1Unqwgiuoy7br8vKiEZo8Jhib-eNDxc5p).

Format:
(E.g. mini-imagenet)
```shell
MINI_DIR/
-- train/
-- n01532829/
-- n01558993/
...
-- train_new_domain/
-- val/
-- val_new_domain/
-- test/
-- test_new_domain/
```

## Training

First set the dataset path `MINI_DIR/, TIERED_DIR/, DOMAIN_DIR/` for the three datasets.

For each dataset, we use its training set to train a pre-trained model (e.g. tiered-imagenet).

```
cd pretrain/
python -u main_resnet.py --epochs 50 --batch_size 1024 --dir_path TIERED_DIR 2>&1 | tee log.txt &
```

We then use the corresponding pre-trained model to train on each dataset. (e.g. mini-imagenet)

```
python -u train_cross.py --gpu_id 0 --net ResNet50 --dset mini-imagenet --s_dset_path MINI_DIR --fsl_test_path MINI_DIR --shot 5 --train-way 16 --pretrained 'mini_checkpoint.pth.tar' --output_dir mini_way_16
```

## Testing

```
python -u test.py --load MODEL_PATH --root MINI_DIR
```