Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dioph/periodicity
Useful tools for periodicity analysis in time series data.
https://github.com/dioph/periodicity
gaussian-processes periodicity-analysis spectral-analysis time-series wavelets
Last synced: 2 months ago
JSON representation
Useful tools for periodicity analysis in time series data.
- Host: GitHub
- URL: https://github.com/dioph/periodicity
- Owner: dioph
- License: mit
- Created: 2018-10-26T12:59:27.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-08-22T20:01:28.000Z (5 months ago)
- Last Synced: 2024-09-23T20:35:35.711Z (4 months ago)
- Topics: gaussian-processes, periodicity-analysis, spectral-analysis, time-series, wavelets
- Language: Python
- Homepage: https://periodicity.readthedocs.io
- Size: 3.41 MB
- Stars: 35
- Watchers: 2
- Forks: 5
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Periodicity
Useful tools for periodicity analysis in time series data.
[![](https://github.com/dioph/periodicity/workflows/CI/badge.svg)](https://github.com/dioph/periodicity/actions?query=branch%3Amaster)
[![PyPI version](https://badge.fury.io/py/periodicity.svg)](https://badge.fury.io/py/periodicity)
[![Downloads](https://pepy.tech/badge/periodicity)](https://pepy.tech/project/periodicity)__Documentation: https://periodicity.readthedocs.io__
Currently includes:
* Auto-Correlation Function (and other general timeseries utilities!)
* Spectral methods:
* Lomb-Scargle periodogram
* Bayesian Lomb-Scargle with linear Trend (soon™)
* Time-frequency methods:
* Wavelet Transform
* Hilbert-Huang Transform
* Composite Spectrum
* Phase-folding methods:
* String Length
* Phase Dispersion Minimization
* Analysis of Variance (soon™)
* Decomposition methods:
* Empirical Mode Decomposition
* Local Mean Decomposition
* Variational Mode Decomposition (soon™)
* Gaussian Processes:
* `george` implementation
* `celerite2` implementation
* `celerite2.theano` implementation## Installation
The latest version is available to download via PyPI: __`pip install periodicity`__.
Alternatively, you can build the current development version from source by cloning this repo (__`git clone https://github.com/dioph/periodicity.git`__) and running __`pip install ./periodicity`__.
## Development
If you're interested in contributing to periodicity, install __pipenv__ and you can setup everything you need with __`pipenv install --dev`__.
To automatically test the project (and also check formatting, coverage, etc.), simply run __`tox`__ within the project's directory.