An open API service indexing awesome lists of open source software.

https://github.com/dirmeier/bayesian-networks-introduction

:bar_chart: Introduction to Bayesian Networks.
https://github.com/dirmeier/bayesian-networks-introduction

bayesian-networks tutorial

Last synced: 10 months ago
JSON representation

:bar_chart: Introduction to Bayesian Networks.

Awesome Lists containing this project

README

          

---
output: md_document
---

# Introduction to Bayesian networks in R

[![status](https://www.repostatus.org/badges/latest/concept.svg)](https://www.repostatus.org/#concept)

## About

This repository contains a practical introduction to *Bayesian networks* in `R` using `bnlearn` for teaching of a one-hour course.

```{r plot, echo=FALSE, message=FALSE, warning=FALSE, fig.align = "center", fig.width=7, fig.height=4}

library(dagitty)
library(bnlearn)
source(file.path(here::here(), "R", "_plot_boostrapped_graph.R"))

signalling.data <- readRDS(
file.path(here::here(), "data", "signalling_data.rds"))
boot.tabu <- boot.strength(signalling.data, algorithm="tabu")
plot.bootstrapped(boot.tabu)
```

## Usage

To go through the `R` tutorials do the following:

- download the latest zip-file [here](https://github.com/dirmeier/bayesian-networks-introduction/releases) and extract it,
- open *Rstudio*,
- click *File -> Open Project* and select `bayesian-networks-introduction.Rproj`,
- open `R/tutorial.R`,
- execute the tutorial line by line.

## Session info

```{r, echo=FALSE}
sessionInfo()
```

## Author

Simon Dirmeier simon.dirmeier @ web.de

## License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.