Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/divelab/deepem3d
https://github.com/divelab/deepem3d
Last synced: 2 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/divelab/deepem3d
- Owner: divelab
- License: mit
- Created: 2017-02-15T07:12:12.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-02-03T00:03:35.000Z (almost 7 years ago)
- Last Synced: 2023-10-20T19:22:04.652Z (about 1 year ago)
- Language: Matlab
- Size: 26.4 KB
- Stars: 17
- Watchers: 4
- Forks: 4
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# DeepEM3D
This is the implementation code for paper submitted to Bioinformatics: **"DeepEM3D: Approaching human-level performance on 3D anisotropic EM image segmentation "**# Required environment:
C++, bash shell, matlab, Cuda7.5# Data
(1). Register at:
http://brainiac2.mit.edu/SNEMI3D/user/register(2). Login in and download data at:
http://brainiac2.mit.edu/SNEMI3D/downloads(3) Convert image files into h5 file that contains **\data** and **\label** sets.
# Code
1. To generate boundary labels:
run matlab scripts: */scripts/create_new_vertical_closed_label.m*2. To generate all data h5 files (train, valid, test):
run matlab scripts: */scripts/read_data_write_data_with_enhanced_labels.m*3. To train and predict netwroks models:
run shell scripts: */model/inception_residual_train_prediction_xfm/train.sh* **or** *predict.sh*4. To generate segmentation on test set:
run matlab scripts */model/inception_residual_train_prediction_3fm/run_segmentation_on_test_set.m*