Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dizys/nyu-nlp-final-project

NYU NLP Final Project: Build a semantic role labeling system utilizing SOTA machine learning models
https://github.com/dizys/nyu-nlp-final-project

bert huggingface nlp nyu partitive python srltagger transformers

Last synced: 15 days ago
JSON representation

NYU NLP Final Project: Build a semantic role labeling system utilizing SOTA machine learning models

Awesome Lists containing this project

README

        

# nyu-nlp-final-project

NYU NLP Final Project: Build a semantic role labeling system utilizing SOTA machine learning models

## Authors

- [Ziyang Zeng](https://github.com/dizys): Maxent Baseline, DistilBERT related experiments
- [Jiahao Chen](https://github.com/jc10347): Random Forest
- [Peiwen Tang](https://github.com/ppppppw): RoBERTA, Feature engineering, Word2Vec and downstream experiments
- [Zeyu Yang](https://github.com/MalikYang9636): BERT base model

## Experiments

- Baseline: [Maxent](https://github.com/dizys/nyu-nlp-homework-6)
- Word2Vec: [Feature Extraction](./feature_extraction/word2vec.py) and [Classification](./feature_extraction/hf_transformer_word2vec.ipynb)
- Random Forest: [Notebook](./src/RandomForest.ipynb)
- BERT (base): [Notebook](./src/bert_based.ipynb)
- DistilBERT: [Notebook](./src/hf_transformer.ipynb)
- RoBERTA: [Notebook](./src/hf_transformer_roberta.ipynb)
- DistilBERT (POS+BIO): [Notebook](./src/hf_transformer_enhanced.ipynb)
- DistilBERT (QA): [Notebook](./src/hf_transformer_qa.ipynb)
- DistilBERT (ONE ARG1): [Notebook](./src/hf_transformer_one_arg.ipynb)

## Results

On %-test:

| Model | Precision | Recall | F1 | Output |
| :------------------------ | :-------: | :----: | :-------: | :-------------------------------------------------- |
| Maxent | 71.88 | 61.33 | 66.19 | [txt](./out/%-out/test-out-maxent.txt) |
| RandomForest | 64.53 | 74.00 | 68.94 | [txt](./out/%-out/test-out-rf.txt) |
| BERT | 91.33 | 91.33 | 91.33 | [txt](./out/%-out/test-out-bert.txt) |
| DistilBERT | 93.75 | 90.00 | 91.84 | [txt](./out/%-out/test-out-distilbert.txt) |
| RoBERTA | 91.50 | 93.33 | 92.41 | [txt](./out/%-out/test-out-RoBERTA.txt) |
| DistilBERT (POS+BIO) | 93.19 | 91.33 | 92.25 | [txt](./out/%-out/test-out-distilbert-enhanced.txt) |
| DistilBERT (QA) | 92.00 | 92.00 | 92.00 | [txt](./out/%-out/test-out-distilbert-qa.txt) |
| **DistilBERT (ONE ARG1)** | 92.67 | 92.67 | **92.67** | [txt](./out/%-out/test-out-distilbert-one-arg1.txt) |

On total-test:

| Model | Precision | Recall | F1 | Output |
| :--------- | :-------: | :----: | :---: | :--------------------------------------------- |
| Maxent | 55.33 | 36.02 | 43.64 | [txt](./out/total-out/test-out-maxent.txt) |
| DistilBERT | 80.49 | 78.43 | 79.45 | [txt](./out/total-out/test-out-distilbert.txt) |