Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/djsutherland/opt-mmd

Learning kernels to maximize the power of MMD tests
https://github.com/djsutherland/opt-mmd

generative-adversarial-network hypothesis-testing kernel-methods machine-learning maximum-mean-discrepancy python shogun statistical-tests tensorflow theano

Last synced: about 1 month ago
JSON representation

Learning kernels to maximize the power of MMD tests

Awesome Lists containing this project

README

        

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" ([arXiv:1611.04488](https://arxiv.org/abs/1611.04488); [published at](https://openreview.net/forum?id=HJWHIKqgl) ICLR 2017), by [Dougal J. Sutherland](http://www.gatsby.ucl.ac.uk/~dougals/) ([@dougalsutherland](https://github.com/dougalsutherland)), [Hsiao-Yu Tung](http://sfish0101.bitbucket.io/), [Heiko Strathmann](http://herrstrathmann.de/about/) ([@karlnapf](https://github.com/karlnapf)), Soumyajit De ([@lambday](https://github.com/lambday)), [Aaditya Ramdas](https://people.eecs.berkeley.edu/~aramdas/), [Alex Smola](https://alex.smola.org/), and [Arthur Gretton](http://www.gatsby.ucl.ac.uk/~gretton/).

- Implementations of the variance estimator are in Theano in [`two_sample/mmd.py`](two_sample/mmd.py) and in Tensorflow in [`gan/mmd.py`](gan/mmd.py).
- General code for learning kernels for a fixed two-sample test, with Theano, is in [two_sample](two_sample).
- Code for the GAN variants, using TensorFlow, is in [gan](gan).
- Code for the efficient permutation test described in Section 3 is in the 6.0 release of [Shogun](http://shogun.ml); look under [`shogun/src/shogun/statistical_testing`](https://github.com/shogun-toolbox/shogun/tree/develop/src/shogun/statistical_testing). An example of using it in the Python API is in [`two_sample/mmd_test.py`](two_sample/mmd_test.py).

This code is under a BSD license, but if you use it, please cite the paper.