Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/djsutherland/opt-mmd
Learning kernels to maximize the power of MMD tests
https://github.com/djsutherland/opt-mmd
generative-adversarial-network hypothesis-testing kernel-methods machine-learning maximum-mean-discrepancy python shogun statistical-tests tensorflow theano
Last synced: about 1 month ago
JSON representation
Learning kernels to maximize the power of MMD tests
- Host: GitHub
- URL: https://github.com/djsutherland/opt-mmd
- Owner: djsutherland
- License: bsd-3-clause
- Created: 2016-11-17T22:23:29.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2018-01-11T16:34:15.000Z (about 7 years ago)
- Last Synced: 2024-12-12T21:51:27.600Z (about 2 months ago)
- Topics: generative-adversarial-network, hypothesis-testing, kernel-methods, machine-learning, maximum-mean-discrepancy, python, shogun, statistical-tests, tensorflow, theano
- Language: Python
- Homepage: https://arxiv.org/abs/1611.04488
- Size: 97.7 KB
- Stars: 206
- Watchers: 13
- Forks: 73
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" ([arXiv:1611.04488](https://arxiv.org/abs/1611.04488); [published at](https://openreview.net/forum?id=HJWHIKqgl) ICLR 2017), by [Dougal J. Sutherland](http://www.gatsby.ucl.ac.uk/~dougals/) ([@dougalsutherland](https://github.com/dougalsutherland)), [Hsiao-Yu Tung](http://sfish0101.bitbucket.io/), [Heiko Strathmann](http://herrstrathmann.de/about/) ([@karlnapf](https://github.com/karlnapf)), Soumyajit De ([@lambday](https://github.com/lambday)), [Aaditya Ramdas](https://people.eecs.berkeley.edu/~aramdas/), [Alex Smola](https://alex.smola.org/), and [Arthur Gretton](http://www.gatsby.ucl.ac.uk/~gretton/).
- Implementations of the variance estimator are in Theano in [`two_sample/mmd.py`](two_sample/mmd.py) and in Tensorflow in [`gan/mmd.py`](gan/mmd.py).
- General code for learning kernels for a fixed two-sample test, with Theano, is in [two_sample](two_sample).
- Code for the GAN variants, using TensorFlow, is in [gan](gan).
- Code for the efficient permutation test described in Section 3 is in the 6.0 release of [Shogun](http://shogun.ml); look under [`shogun/src/shogun/statistical_testing`](https://github.com/shogun-toolbox/shogun/tree/develop/src/shogun/statistical_testing). An example of using it in the Python API is in [`two_sample/mmd_test.py`](two_sample/mmd_test.py).This code is under a BSD license, but if you use it, please cite the paper.