An open API service indexing awesome lists of open source software.

https://github.com/dkurt/openvino_efficientdet

EfficientDet with Intel OpenVINO
https://github.com/dkurt/openvino_efficientdet

automl efficientdet google intel openvino

Last synced: 5 months ago
JSON representation

EfficientDet with Intel OpenVINO

Awesome Lists containing this project

README

          

# EfficientDet with Intel OpenVINO

This repository demonstrates how to convert [AutoML EfficientDet](https://github.com/google/automl) to OpenVINO IR.

Follow the steps from [.github/workflows/main.yml](.github/workflows/main.yml) to convert your model.
For public models, download IRs from [GitHub Actions](https://github.com/dkurt/openvino_efficientdet/actions?query=branch%3Amaster)

[![CI](https://github.com/dkurt/openvino_efficientdet/workflows/CI/badge.svg?branch=master)](https://github.com/dkurt/openvino_efficientdet/actions?query=branch%3Amaster)

## How to convert model
1. Freeze graph

```bash
cd automl/efficientdet
python3 model_inspect.py --runmode=saved_model --model_name=efficientdet-d4 --ckpt_path=efficientdet-d4 --saved_model_dir=savedmodeldir
```

2. Create IR
```bash
git clone https://github.com/openvinotoolkit/openvino --depth 1

python3 openvino/model-optimizer/mo.py \
--input_model efficientdet-d4.pb \
--transformations_config openvino/model-optimizer/extensions/front/tf/automl_efficientdet.json \
--input_shape "[1, 1024, 1024, 3]"
```
find resolution of your model at https://github.com/google/automl/blob/master/efficientdet/hparams_config.py

`automl_efficientdet.json` contains topology hyper-parameters

3. Validate model comparing accuracy with an original frozen TensorFlow graph
```bash
python3 scripts/validate.py --version d4 --width 1024 --height 1024
```