https://github.com/dkurt/openvino_efficientdet
EfficientDet with Intel OpenVINO
https://github.com/dkurt/openvino_efficientdet
automl efficientdet google intel openvino
Last synced: 5 months ago
JSON representation
EfficientDet with Intel OpenVINO
- Host: GitHub
- URL: https://github.com/dkurt/openvino_efficientdet
- Owner: dkurt
- License: apache-2.0
- Created: 2020-09-10T16:46:21.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-03-14T14:01:50.000Z (almost 3 years ago)
- Last Synced: 2025-04-04T19:03:11.441Z (10 months ago)
- Topics: automl, efficientdet, google, intel, openvino
- Language: Python
- Homepage: https://github.com/openvinotoolkit/openvino
- Size: 1000 KB
- Stars: 12
- Watchers: 1
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Funding: .github/FUNDING.yml
- License: LICENSE
Awesome Lists containing this project
README
# EfficientDet with Intel OpenVINO
This repository demonstrates how to convert [AutoML EfficientDet](https://github.com/google/automl) to OpenVINO IR.
Follow the steps from [.github/workflows/main.yml](.github/workflows/main.yml) to convert your model.
For public models, download IRs from [GitHub Actions](https://github.com/dkurt/openvino_efficientdet/actions?query=branch%3Amaster)
[](https://github.com/dkurt/openvino_efficientdet/actions?query=branch%3Amaster)
## How to convert model
1. Freeze graph
```bash
cd automl/efficientdet
python3 model_inspect.py --runmode=saved_model --model_name=efficientdet-d4 --ckpt_path=efficientdet-d4 --saved_model_dir=savedmodeldir
```
2. Create IR
```bash
git clone https://github.com/openvinotoolkit/openvino --depth 1
python3 openvino/model-optimizer/mo.py \
--input_model efficientdet-d4.pb \
--transformations_config openvino/model-optimizer/extensions/front/tf/automl_efficientdet.json \
--input_shape "[1, 1024, 1024, 3]"
```
find resolution of your model at https://github.com/google/automl/blob/master/efficientdet/hparams_config.py
`automl_efficientdet.json` contains topology hyper-parameters
3. Validate model comparing accuracy with an original frozen TensorFlow graph
```bash
python3 scripts/validate.py --version d4 --width 1024 --height 1024
```