Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dmmiller612/machine_learning_spring_weka
Weka with spring example
https://github.com/dmmiller612/machine_learning_spring_weka
machine-learning spring weka
Last synced: 2 months ago
JSON representation
Weka with spring example
- Host: GitHub
- URL: https://github.com/dmmiller612/machine_learning_spring_weka
- Owner: dmmiller612
- Created: 2016-02-06T23:38:59.000Z (almost 9 years ago)
- Default Branch: master
- Last Pushed: 2017-09-19T18:09:24.000Z (over 7 years ago)
- Last Synced: 2023-10-20T19:23:56.759Z (about 1 year ago)
- Topics: machine-learning, spring, weka
- Language: Java
- Homepage:
- Size: 6.23 MB
- Stars: 19
- Watchers: 5
- Forks: 14
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Machine Learning with Weka and Spring examples
Code url: https://github.com/dmmiller612/Machine_Learning_Spring_Weka
# Instructions
If wanting to run the server locally, instead of just using the Weka models located in /src/main/resources/models, there are a couple of dependencies needed: Maven and Java.
1. This uses java 1.7, but should work with 1.8 as well. For the JRE, `sudo apt-get install default-jre` . For the jdk, `sudo apt-get install default-jdk`.
2. This uses Maven 3.x . To Install maven 3, use `sudo apt-get install maven`.
3. Go to the root of the assignment code repository and type: `mvn clean package` into the command line. Then type `java -jar target/derek-assignment-1-0.1.0.jar`. Once running the jar, all of optimal models will start to run against the test datasets of both the Car Evaluation and Census dataset. This is here just to make it easier to visualize, so that you do not have to use the rest api. If you want to use the rest api, see documentation below.
4. IF three does not work, it is because the plugin did not properly install. Running this command should do the trick inside of the students-filters-master
"mvn install:install-file -Dfile=filters-0.0.1-SNAPSHOT.jar -DgroupId=filters -DartifactId=filters -Dversion=0.0.1-SNAPSHOT -Dpackaging=jar"# Navigating the Source Code
### src/main/java/com/derek/ml/controllers
contains the rest endpoints.
### src/main/java/com/derek/ml/services
contains all of the logic and configuration of weka models. ClusterService -> k-means and EM, FeatureReductionService -> ICA, PCA, RP, CFS, KNNService -> KNN, NeuralNetworkService -> Neural Network, DecisionTreeService->Decision Trees (boosted an unboosted), SVMService->SVM
### src/main/java/com/derek/ml/models
DTO passing layers
# Navigating the Resources
### src/main/resources/csv
Contains all of the initial csv files used (Arffs are only used for the models, however)
### src/main/resources/arffs
Contains all of the arffs used. car_train.arff and car_test.arff are the training and testing instances for the car evaluation dataset. census.arff and censusTest.arff are the training and testing instances for the Census dataset.
### src/main/resources/models
Contains several models used for the supervised learning analysis. If you don’t want to run the code locally, you can just use these models against the training and test arffs listed above.
# Using the Rest API (Optional)
I thought I would just add this to show the code I used for experimentation with Weka. I used the api, so that I could do multiple concurrent requests.
Universal Query parameters: fileName : {Car, Census, CarBin, CensusBin}, testType : {CrossValidation, TestData, Train}
# Cluster
Endpoints: /kMeans and /em
Query Params => clusters : int, distances : {Euclidean, Manhatten}, iterations: int, featureSelection: {ICA, PCA, RP, CFS};# Feature Reduction
Endpoints: /featureReduction/pca /featureReduction/ica /featureReduction/rp /featureReduction/cfs
# Decision Trees
Endpoint: /decisiontree
Query Params => minNumObj : int, boost : boolean, confidence : String, treeType : {ID3, J48}
Example Requests:
http://localhost:8080/decisiontree?fileName=Car&testType=TestData&minNumObj=2&confidence=.25
http://localhost:8080/decisiontree?fileName=Census&testType=CrossValidation&minNumObj=2&confidence=.25
http://localhost:8080/decisiontree?fileName=Car&testType=CrossValidation&minNumObj=2&confidence=.25&boost=true //with boostingUsing incremental testing example:
http://localhost:8080/decisiontree/test?fileName=Car&testType=TestData&minNumObj=2&confidence=.25&boost=true# KNN
Endpoint: /knn
Query Params => k : int, boost : boolean, treeTypes {BallTree, CoverTree, Linear}, useFeatureSelection : boolean (applies only to Census file)
Examples :
http://localhost:8080/knn?fileName=Car&testType=TestData&k=3
http://localhost:8080/knn?fileName=Census&testType=TestData&k=5&featureSelection=true
http://localhost:8080/knn?fileName=Census&testType=TestData&k=5&boost=trueUsing incremental testing example:
http://localhost:8080/knn/test?fileName=Census&testType=TestData&k=5# ANN
Endpoint: /neuralnetwork
Query Params => hiddenLayers : int, epochRate : int, featureSelection : boolean (applies only to Census file)
Examples:
http://localhost:8080/neuralnetwork?fileName=Car&testType=TestData&hiddenLayers=10&epochRate=500
http://localhost:8080/neuralnetwork?fileName=Census&testType=TestData&hiddenLayers=5&epochRate=500&featureSelection=trueUsing incremental testing example:
http://localhost:8080/neuralnetwork/test?fileName=Car&testType=TestData&hiddenLayers=10&epochRate=500# SVM
Endpoint: /svm
Query Params => kernelType : {Polynomial, RBF, Sigmoid, Linear}
Examples:
http://localhost:8080/svm?fileName=Car&testType=TestData&kernelType=Polynomial
http://localhost:8080/svm?fileName=Census&testType=TestData&kernelType=RBF
http://localhost:8080/svm?fileName=Census&testType=TestData&kernelType=Sigmoid
http://localhost:8080/svm?fileName=Census&testType=TestData&kernelType=Linear# MODELS
The model names contain the parameters that were used, fileName, and algorithm name.
Decision Tree Naming Convention: decisionTree + minNumObj + Boosted + confidence + fileName + .model
Example: decisionTree-minNumObj=100-Boosted=false-C=0.25-file=Census.modelKNN Naming Convention: KNearestNeighbor + k + fileName + .model
Example : KNearestNeighbor-k=20-fileName=Car.modelANN Naming Convention: ANN + hiddenLayers + epochRate + FileName + (Optional) featureSelection + .model
Example : ANN-hiddenLayers=10-epochRate=250-FileName=Census.modelSVM Naming Convention: SVM + kernelType + FileName + .model
Example : SVM-KernelType=Linear-FileName=Car.model