Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dmphillippo/multinma

Network meta-analysis of individual and aggregate data in Stan
https://github.com/dmphillippo/multinma

r r-package r-stats statistics

Last synced: about 22 hours ago
JSON representation

Network meta-analysis of individual and aggregate data in Stan

Awesome Lists containing this project

README

        

---
output: github_document
bibliography: inst/REFERENCES.bib
---

```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# multinma: Network Meta-Analysis of individual and aggregate data in Stan

[![CRAN status](https://www.r-pkg.org/badges/version/multinma)](https://CRAN.R-project.org/package=multinma)
[![R-universe](https://dmphillippo.r-universe.dev/badges/multinma)](https://dmphillippo.r-universe.dev)
[![R-CMD-check](https://github.com/dmphillippo/multinma/workflows/R-CMD-check/badge.svg)](https://github.com/dmphillippo/multinma/actions)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3904454.svg)](https://doi.org/10.5281/zenodo.3904454)

The `multinma` package implements network meta-analysis, network meta-regression, and multilevel network meta-regression models which combine evidence from a network of studies and treatments using either aggregate data or individual patient data from each study [@methods_paper;@Phillippo_thesis].
Models are estimated in a Bayesian framework using Stan [@Carpenter2017].

## Installation

You can install the released version of `multinma` from [CRAN](https://CRAN.R-project.org/package=multinma) with:

``` r
install.packages("multinma")
```

The development version can be installed from [R-universe](https://dmphillippo.r-universe.dev) with:

```r
install.packages("multinma", repos = c("https://dmphillippo.r-universe.dev", getOption("repos")))
```

or from source on [GitHub](https://github.com/dmphillippo/multinma) with:

``` r
# install.packages("devtools")
devtools::install_github("dmphillippo/multinma")
```

Installing from source requires that the `rstan` package is installed and configured.
See the installation guide [here](https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started).

## Getting started
A good place to start is with the package vignettes which walk through example analyses, see `vignette("vignette_overview")` for an overview.
The series of NICE Technical Support Documents on evidence synthesis gives a detailed introduction to network meta-analysis:

> Dias, S. et al. (2011). "NICE DSU Technical Support Documents 1-7: Evidence Synthesis for Decision Making." _National Institute for Health and Care Excellence._ Available from https://www.sheffield.ac.uk/nice-dsu/tsds.

Multilevel network meta-regression is set out in the following methods papers:

> Phillippo, D. M. et al. (2020). "Multilevel Network Meta-Regression for population-adjusted treatment comparisons." _Journal of the Royal Statistical Society: Series A (Statistics in Society)_, 183(3):1189-1210. doi: [10.1111/rssa.12579](https://doi.org/10.1111/rssa.12579).

> Phillippo, D. M. et al. (2024). "Multilevel network meta-regression for general likelihoods: synthesis of individual and aggregate data with applications to survival analysis". _arXiv_:[2401.12640](https://arxiv.org/abs/2401.12640).

## Citing multinma
The `multinma` package can be cited as follows:

> Phillippo, D. M. (`r format(Sys.Date(), "%Y")`). _multinma: Bayesian Network Meta-Analysis of Individual and Aggregate Data_. R package version `r getNamespaceVersion("multinma")`, doi: [10.5281/zenodo.3904454](https://doi.org/10.5281/zenodo.3904454).

When fitting ML-NMR models, please cite the methods paper:

> Phillippo, D. M. et al. (2020). "Multilevel Network Meta-Regression for population-adjusted treatment comparisons." _Journal of the Royal Statistical Society: Series A (Statistics in Society)_, 183(3):1189-1210. doi: [10.1111/rssa.12579](https://doi.org/10.1111/rssa.12579).

For ML-NMR models with time-to-event outcomes, please cite:

> Phillippo, D. M. et al. (2024). "Multilevel network meta-regression for general likelihoods: synthesis of individual and aggregate data with applications to survival analysis". _arXiv_:[2401.12640](https://arxiv.org/abs/2401.12640).

## References