https://github.com/doccano/doccano-transformer
The official tool for transforming doccano format into common dataset formats.
https://github.com/doccano/doccano-transformer
annotation conll dataset doccano machine-learning natural-language-processing
Last synced: 14 days ago
JSON representation
The official tool for transforming doccano format into common dataset formats.
- Host: GitHub
- URL: https://github.com/doccano/doccano-transformer
- Owner: doccano
- License: mit
- Created: 2020-03-29T10:32:42.000Z (about 5 years ago)
- Default Branch: master
- Last Pushed: 2023-04-18T15:54:11.000Z (about 2 years ago)
- Last Synced: 2025-04-14T19:15:22.803Z (about 1 month ago)
- Topics: annotation, conll, dataset, doccano, machine-learning, natural-language-processing
- Language: Python
- Homepage:
- Size: 121 KB
- Stars: 106
- Watchers: 9
- Forks: 33
- Open Issues: 19
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
README
# doccano-transformer
[](https://app.codacy.com/gh/doccano/doccano-transformer?utm_source=github.com&utm_medium=referral&utm_content=doccano/doccano-transformer&utm_campaign=Badge_Grade_Dashboard)
[](https://github.com/doccano/doccano-transformer/actions)Doccano Transformer helps you to transform an exported dataset into the format of your favorite machine learning library.
## Supported formats
Doccano Transformer supports the following formats:
* CoNLL 2003
* spaCy## Install
To install `doccano-transformer`, simply use `pip`:
```bash
pip install doccano-transformer
```## Examples
### Named Entity Recognition
The following formats are supported:
- CoNLL 2003
- spaCy```python
from doccano_transformer.datasets import NERDataset
from doccano_transformer.utils import read_jsonldataset = read_jsonl(filepath='example.jsonl', dataset=NERDataset, encoding='utf-8')
dataset.to_conll2003(tokenizer=str.split)
dataset.to_spacy(tokenizer=str.split)
```## Contribution
We encourage you to contribute to doccano transformer! Please check out the [Contributing to doccano transformer guide](https://github.com/doccano/doccano-transformer/blob/master/CONTRIBUTING.md) for guidelines about how to proceed.
## License
[MIT](https://github.com/doccano/doccano-transformer/blob/master/LICENSE)