Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dod-o/statistical-learning-method_code
手写实现李航《统计学习方法》书中全部算法
https://github.com/dod-o/statistical-learning-method_code
code machine-learning-algorithms statistical-learning-method
Last synced: about 6 hours ago
JSON representation
手写实现李航《统计学习方法》书中全部算法
- Host: GitHub
- URL: https://github.com/dod-o/statistical-learning-method_code
- Owner: Dod-o
- Created: 2018-11-15T15:33:17.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-11-13T06:36:04.000Z (2 months ago)
- Last Synced: 2025-01-21T23:01:02.697Z (about 6 hours ago)
- Topics: code, machine-learning-algorithms, statistical-learning-method
- Language: Python
- Homepage:
- Size: 49.1 MB
- Stars: 11,178
- Watchers: 309
- Forks: 2,888
- Open Issues: 19
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## 【广告】每日Arxiv(中文版)
每日Arxiv(中文版)立志paper**汉化**,目前翻译目前涵盖**标题**和**摘要**,AI学科近期支持论文**全文汉化**一天阅读百篇paper不是梦!
链接: [学术巷子(xueshuxiangzi.com)](https://www.xueshuxiangzi.com/)
前言
====力求每行代码都有注释,重要部分注明公式来源。具体会追求下方这样的代码,学习者可以照着公式看程序,让代码有据可查。
![image](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/CodePic.png)
如果时间充沛的话,可能会试着给每一章写一篇博客。先放个博客链接吧:[传送门](http://www.pkudodo.com/)。##### 注:其中Mnist数据集已转换为csv格式,由于体积为107M超过限制,改为压缩包形式。下载后务必先将Mnist文件内压缩包直接解压。
### 【Updates】
**书籍出版**:目前已与**人民邮电出版社**签订合同,未来将结合该repo整理出版机器学习实践相关书籍。同时会在book分支中对代码进行重构,欢迎在issue中提建议!同时issue中现有的问题也会考虑进去。(Feb 12 2022)**线下培训**:女朋友计划近期开办**ML/MLP/CV线下培训班**,地点**北上广深杭**,目标各方向**快速入门**,正在筹备。这里帮她打个广告,可以添加微信15324951814(备注线下培训)。本人也会被拉过去义务评估课程质量。。。(Feb 12 2022)
**无监督部分更新**:部分**无监督**算法已更新!!! 该部分由[Harold-Ran](https://github.com/Harold-Ran)提供,在此感谢! 有其他算法补充的同学也欢迎添加我微信并pr!(Jan 27 2021)
实现
======## 监督部分
### 第二章 感知机:
博客:[统计学习方法|感知机原理剖析及实现](http://www.pkudodo.com/2018/11/18/1-4/)
实现:[perceptron/perceptron_dichotomy.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/perceptron/perceptron_dichotomy.py)
### 第三章 K近邻:
博客:[统计学习方法|K近邻原理剖析及实现](http://www.pkudodo.com/2018/11/19/1-2/)
实现:[KNN/KNN.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/KNN/KNN.py)
### 第四章 朴素贝叶斯:
博客:[统计学习方法|朴素贝叶斯原理剖析及实现](http://www.pkudodo.com/2018/11/21/1-3/)
实现:[NaiveBayes/NaiveBayes.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/NaiveBayes/NaiveBayes.py)
### 第五章 决策树:
博客:[统计学习方法|决策树原理剖析及实现](http://www.pkudodo.com/2018/11/30/1-5/)
实现:[DecisionTree/DecisionTree.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/DecisionTree/DecisionTree.py)
### 第六章 逻辑斯蒂回归与最大熵模型:
博客:逻辑斯蒂回归:[统计学习方法|逻辑斯蒂原理剖析及实现](http://www.pkudodo.com/2018/12/03/1-6/)
博客:最大熵:[统计学习方法|最大熵原理剖析及实现](http://www.pkudodo.com/2018/12/05/1-7/)实现:逻辑斯蒂回归:[Logistic_and_maximum_entropy_models/logisticRegression.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/Logistic_and_maximum_entropy_models/logisticRegression.py)
实现:最大熵:[Logistic_and_maximum_entropy_models/maxEntropy.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/Logistic_and_maximum_entropy_models/maxEntropy.py)
### 第七章 支持向量机:
博客:[统计学习方法|支持向量机(SVM)原理剖析及实现](http://www.pkudodo.com/2018/12/16/1-8/)
实现:[SVM/SVM.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/SVM/SVM.py)
### 第八章 提升方法:
实现:[AdaBoost/AdaBoost.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/AdaBoost/AdaBoost.py)
### 第九章 EM算法及其推广:
实现:[EM/EM.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/EM/EM.py)
### 第十章 隐马尔可夫模型:
实现:[HMM/HMM.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/HMM/HMM.py)## 无监督部分
### 第十四章 聚类方法
实现:[K-means_Clustering.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/Clustering/K-means_Clustering/K-means_Clustering.py)实现:[Hierachical_Clustering.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/Clustering/Hierachical_Clustering/Hierachical_Clustering.py)
### 第十六章 主成分分析
实现:[PCA.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/PCA/PCA.py)### 第十七章 潜在语意分析
实现:[LSA.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/LSA/LSA.py)### 第十八章 概率潜在语意分析
实现:[PLSA.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/PLSA/PLSA.py)### 第二十章 潜在狄利克雷分配
实现:[LDA.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/LDA/LDA.py)### 第二十一章 PageRank算法
实现:[Page_Rank.py](https://github.com/Dod-o/Statistical-Learning-Method_Code/blob/master/Page_Rank/Page_Rank.py)## 许可 / License
本项目内容许可遵循[Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)。The content of this project itself is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
联系
======
欢迎pr,有疑问也可通过issue、微信或邮件联系。
此外如果有需要**MSRA**实习内推的同学,欢迎骚扰。
**Wechat:** lvtengchao(备注“blog-学校/单位-姓名”)
**Email:** [email protected]项目历史
======