Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dohlee/spliceai-pytorch

Implementation of SpliceAI, Illumina's deep neural network to predict variant effects on splicing, in PyTorch.
https://github.com/dohlee/spliceai-pytorch

artificial-intelligence bioinformatics biology computational-biology deep-learning deep-neural-networks reproduction reproduction-code splicing variant-effect-prediction

Last synced: about 2 months ago
JSON representation

Implementation of SpliceAI, Illumina's deep neural network to predict variant effects on splicing, in PyTorch.

Awesome Lists containing this project

README

        

# spliceai-pytorch

![model](img/banner.png)

Implementation of SpliceAI, Illumina's deep neural network to predict variant effects on splicing, in PyTorch. You can find the Illumina's official implementation [here](https://github.com/Illumina/SpliceAI).

## Installation

```bash
pip install spliceai-pytorch
```

## Usage
```python
import torch
from spliceai_pytorch import SpliceAI

model_80nt = SpliceAI.from_preconfigured('80nt')
# model_400nt = SpliceAI.from_preconfigured('400nt')
# model_2k = SpliceAI.from_preconfigured('2k')
# model_10k = SpliceAI.from_preconfigured('10k')

# ... training ...

x = torch.randn([1, 4, 80 + 5000]) # Predicts Donor/Acceptor probs only for core 5000nt region.

probs = model_80nt(x) # (1, 5000, 3)
```

## Generating train/test sets

First, download 'SpliceAI train code' directory from [here](https://basespace.illumina.com/s/5u6ThOblecrh) and unzip it to `spliceai_train_code` directory.
Also, download human reference genome (version hg19) to `spliceai_train_code/reference` directory.

Then, run the following command to generate train/test sets after moving into `spliceai_train_code/Canonical`.

```bash
# Before running `grab_sequence.sh`,
# make sure that the variable CL_max is configured properly in `constants.py` (80, 400, 2000 or 10000)
chmod 755 grab_sequence.sh
./grab_sequence.sh

# Requires Python 2.7, with numpy, h5py, scikit-learn installed
python create_datafile.py train all # ~4 miniutes, creates datafile_train_all.h5 (27G)
python create_datafile.py test 0 # ~1 minute, creates datafile_test_0.h5 (2.4G)

python create_dataset.py train all # ~11 minutes, creates dataset_train_all.h5 (5.4G)
python create_dataset.py test 0 # ~1 minute, creates dataset_test_0.h5 (0.5G)
```

## Training
```shell
$ python -m spliceai_pytorch.train --model 80nt \ # 80nt, 400nt, 2k, 10k
--train-h5 spliceai_train_code/Canonical/dataset_train_all.h5 \
--test-h5 spliceai_train_code/Canonical/dataset_test_0.h5 \
--use-wandb # Optional, for logging.
```

## Reproduction status (wip)

Currently on the reproduction of Figure 1E. Results are as below, and you can view [model training logs here (W&B)](https://wandb.ai/dohlee/spliceai-pytorch/reports/SpliceAI-reproduction-Single-model---VmlldzozNjAyNTE5?accessToken=mfmsivay143tqauivt18mxvuna3j1s7ff54c6lg749hjuf11r8xnsllj3ecs1okm).

NOTE: Target results are from ensemble of 5 models, while reproduced results are from a single model.

|Model|Top-k acc. (target)|PR-AUC (target)|Top-k acc. (reproduced)|PR-AUC (reproduced)|
|-----|:-----------------:|:-------------:|:---------------------:|:-----------------:|
SpliceAI-80nt|0.57|0.60|0.54355|0.56435|
SpliceAI-400nt|0.90|0.95|0.87265|0.93160|
SpliceAI-2k|0.93|0.97|0.9083|0.9541|
SpliceAI-10k|0.95|0.98|0.9286|0.96475|

## Citation
```bibtex
@article{jaganathan2019predicting,
title={Predicting splicing from primary sequence with deep learning},
author={Jaganathan, Kishore and Panagiotopoulou, Sofia Kyriazopoulou and McRae, Jeremy F and Darbandi, Siavash Fazel and Knowles, David and Li, Yang I and Kosmicki, Jack A and Arbelaez, Juan and Cui, Wenwu and Schwartz, Grace B and others},
journal={Cell},
volume={176},
number={3},
pages={535--548},
year={2019},
publisher={Elsevier}
}
```