Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dohoseok/context-based-parking-slot-detect


https://github.com/dohoseok/context-based-parking-slot-detect

Last synced: about 1 month ago
JSON representation

Awesome Lists containing this project

README

        

# context-based-parking-slot-detect

Tensorflow implementation of [Context-based parking slot detection](https://ieeexplore.ieee.org/abstract/document/9199853) (IEEE Access)

This implementation is based on https://github.com/wizyoung/YOLOv3_TensorFlow

# Prepare Dataset (PIL-park)
0. This code should be run only once at the beginning.

1. Download Train Dataset
- [link](https://drive.google.com/file/d/1i6I-71g1fNL7_Qh-Qs1oOKLclrP2qUmO/view?usp=sharing)
- Unzip to $your_data_path/train folder

2. Download Test Dataset
- [link](https://drive.google.com/file/d/1z94Oqcy0Dich1GgiMkyPY5-wltsL8_hq/view?usp=sharing)
- Unzip to $your_data_path/test folder

3. Data augmentation, create tfrecord and text files
- python prepare_data.py --data_path=$your_data_path

# Train Dataset
1. Download pretrain weight (Updated 2020.10.26)
- [link](https://drive.google.com/drive/folders/1mXbNgNxyXPi7JNsnBaxEv1-nWr7SVoQt)
- Save to 'pre_weight' folder under "context-based detect" folder

2. python train.py --data_path=$your_data_path

3. Trained Weight path
- Weight files of parking context recognizer are saved to 'weight_pcr/YYYYMMDD_HHMM'
- Weight files of parking slot detector fine-tuned for parallel parking slots are saved to 'weight_psd/type_0/YYYYMMDD_HHMM'
- Weight files of parking slot detector fine-tuned for perpendicular parking slots are saved to 'weight_psd/type_1/YYYYMMDD_HHMM'
- Weight files of parking slot detector fine-tuned for diagonal parking slots are saved to 'weight_psd/type_2/YYYYMMDD_HHMM'

# Test Method (with downloaded weight files)
1. Download trained weight
- [link](https://drive.google.com/file/d/1g3PXkTn8-pmIotjJqX_aR1ZPJNrrmWKG/view?usp=sharing)
- Unzip under main path (locate "weight_pcr" and "weight_psd" under "context-based detect" folder)

2. Evaluate
- python test.py --data_path=$your_test_path

# Test Method (with your trained weight files)
1. Evaluate
- python test.py --data_path=$your_test_path --pcr_test_weight='weight_pcr/YYYYMMDD_HHMM/cp-0050.ckpt' --psd_test_weight_type0='weight_psd/type_0/YYYYMMDD_HHMM' --psd_test_weight_type1='weight_psd/type_1/YYYYMMDD_HHMM' --psd_test_weight_type2='weight_psd/type_2/YYYYMMDD_HHMM'



# Converted dataset of ps2.0
- Converted version of the [ps2.0](https://cslinzhang.github.io/deepps/) dataset to fit our format.
- [link](https://drive.google.com/file/d/1vM_u_YNFTdv7eHhwn4ExXE98_7BpSa3X/view?usp=sharing)


# Citation
If you use this code for your research, please cite the following work:
```
@ARTICLE{9199853,
author={Do, Hoseok and Choi, Jin Young},
journal={IEEE Access},
title={Context-Based Parking Slot Detection With a Realistic Dataset},
year={2020},
volume={8},
number={},
pages={171551-171559},
doi={10.1109/ACCESS.2020.3024668}}
'''