Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dokato/dfa
Detrended Fluctuation Analysis
https://github.com/dokato/dfa
Last synced: about 1 month ago
JSON representation
Detrended Fluctuation Analysis
- Host: GitHub
- URL: https://github.com/dokato/dfa
- Owner: dokato
- License: mit
- Created: 2015-10-13T20:39:06.000Z (about 9 years ago)
- Default Branch: master
- Last Pushed: 2021-04-29T09:02:14.000Z (over 3 years ago)
- Last Synced: 2024-11-01T04:35:56.366Z (about 2 months ago)
- Language: Jupyter Notebook
- Size: 257 KB
- Stars: 63
- Watchers: 7
- Forks: 19
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Detrended Fluctuation Analysis
==============================Simple python implementation of the DFA algorithm.
It bases on these two articles:
* Hardstone, R. et al. Detrended fluctuation analysis: A scale-free view on neuronal oscillations. Front. Physiol. 3 NOV, 1–13 (2012).
* Ihlen, E. a F. Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 3 JUN, 1–18 (2012).You may test it using power law data generator from `generate.py`, or with the code below:
```python
from dfa import dfa
from generate import power_law_noisetrue_exp = 0.8
x = power_law_noise(2**12, true_exp)
scales, fluct, alpha = dfa(x)
print("True scaling exponent: {}".format(true_exp))
print("Estimated DFA exponent: {}".format(alpha))```
Requirements
------------* numpy
* matplotlib