Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dongjunlee/dmn-tensorflow
TensorFlow implementation of 'Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2015)'
https://github.com/dongjunlee/dmn-tensorflow
babi-tasks dynamic-memory-network hb-experiment natural-language-processing nlp question-answering tensorflow
Last synced: 19 days ago
JSON representation
TensorFlow implementation of 'Ask Me Anything: Dynamic Memory Networks for Natural Language Processing (2015)'
- Host: GitHub
- URL: https://github.com/dongjunlee/dmn-tensorflow
- Owner: DongjunLee
- Created: 2017-12-03T16:07:07.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2018-05-21T02:40:59.000Z (over 6 years ago)
- Last Synced: 2024-12-24T21:25:55.489Z (27 days ago)
- Topics: babi-tasks, dynamic-memory-network, hb-experiment, natural-language-processing, nlp, question-answering, tensorflow
- Language: Python
- Homepage:
- Size: 319 KB
- Stars: 42
- Watchers: 8
- Forks: 25
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Dynamic Memory Network [![hb-research](https://img.shields.io/badge/hb--research-experiment-green.svg?style=flat&colorA=448C57&colorB=555555)](https://github.com/hb-research)
TensorFlow implementation of [Ask Me Anything:
Dynamic Memory Networks for Natural Language Processing](https://arxiv.org/pdf/1506.07285.pdf).![images](images/ask_me_anything_figure_3.png)
## Requirements
- Python 3.6
- TensorFlow 1.8
- [hb-config](https://github.com/hb-research/hb-config) (Singleton Config)
- nltk (tokenizer and blue score)
- tqdm (progress bar)## Project Structure
init Project by [hb-base](https://github.com/hb-research/hb-base)
.
├── config # Config files (.yml, .json) using with hb-config
├── data # dataset path
├── notebooks # Prototyping with numpy or tf.interactivesession
├── dynamic_memory # dmn architecture graphs (from input to output)
├── __init__.py # Graph logic
├── encoder.py # Encoder
└── episode.py # Episode and AttentionGate
├── data_loader.py # raw_date -> precossed_data -> generate_batch (using Dataset)
├── hook.py # training or test hook feature (eg. print_variables)
├── main.py # define experiment_fn
└── model.py # define EstimatorSpecReference : [hb-config](https://github.com/hb-research/hb-config), [Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_generator), [experiments_fn](https://www.tensorflow.org/api_docs/python/tf/contrib/learn/Experiment), [EstimatorSpec](https://www.tensorflow.org/api_docs/python/tf/estimator/EstimatorSpec)
## Todo
- Implements DMN+ ([Dynamic Memory Networks for Visual and Textual Question Answering](https://arxiv.org/pdf/1603.01417.pdf) (2016) by C Xiong)
## Config
example: bAbi_task1.yml
```yml
data:
base_path: 'data/'
task_path: 'en-10k/'
task_id: 1
PAD_ID: 0model:
batch_size: 16
use_pretrained: true # (true or false)
embed_dim: 50 # if use_pretrained: only available 50, 100, 200, 300
encoder_type: uni # uni, bi
cell_type: gru # lstm, gru, layer_norm_lstm, nas
num_layers: 1
num_units: 32
memory_hob: 3
dropout: 0.0
reg_scale: 0.001train:
learning_rate: 0.0001
optimizer: 'Adam' # Adagrad, Adam, Ftrl, Momentum, RMSProp, SGDtrain_steps: 100000
model_dir: 'logs/bAbi_task1'save_checkpoints_steps: 1000
check_hook_n_iter: 1000
min_eval_frequency: 1000print_verbose: False
debug: False
```## Usage
Install requirements.
```pip install -r requirements.txt```
Then, prepare dataset and pre-trained glove.
```
sh scripts/fetch_babi_data.sh
sh scripts/fetch_glove_data.sh
```Finally, start trand and evalueate model
```
python main.py --config bAbi_task1 --mode train_and_evaluate
```### Experiments modes
:white_check_mark: : Working
:white_medium_small_square: : Not tested yet.- :white_check_mark: `evaluate` : Evaluate on the evaluation data.
- :white_medium_small_square: `extend_train_hooks` : Extends the hooks for training.
- :white_medium_small_square: `reset_export_strategies` : Resets the export strategies with the new_export_strategies.
- :white_medium_small_square: `run_std_server` : Starts a TensorFlow server and joins the serving thread.
- :white_medium_small_square: `test` : Tests training, evaluating and exporting the estimator for a single step.
- :white_check_mark: `train` : Fit the estimator using the training data.
- :white_check_mark: `train_and_evaluate` : Interleaves training and evaluation.---
### Tensorboar
```tensorboard --logdir logs```
## Reference
- [Implementing Dynamic memory networks](https://yerevann.github.io/2016/02/05/implementing-dynamic-memory-networks/)
- [arXiv - Ask Me Anything:
Dynamic Memory Networks for Natural Language Processing](https://arxiv.org/abs/1506.07285) (2015. 6) by A Kumar
- [arXiv - Dynamic Memory Networks for Visual and Textual Question Answering](https://arxiv.org/abs/1603.01417) (2016. 3) by C Xiong## Author
Dongjun Lee ([email protected])