An open API service indexing awesome lists of open source software.

https://github.com/dongjunlee/gan-pytorch

PyTorch implementation of 'GAN (Generative Adversarial Networks)'
https://github.com/dongjunlee/gan-pytorch

deep-learning estimator experiments gan generative-adversarial-network generative-model hb-experiment pytorch

Last synced: about 2 months ago
JSON representation

PyTorch implementation of 'GAN (Generative Adversarial Networks)'

Awesome Lists containing this project

README

        

# Generative Adversarial Nets [![hb-research](https://img.shields.io/badge/hb--research-experiment-green.svg?style=flat&colorA=448C57&colorB=555555)](https://github.com/hb-research)

PyTorch implementation of [Generative Adversarial Nets](https://arxiv.org/abs/1406.2661).

![images](images/gan-architecture.jpeg)

- [images source](http://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html)

## Requirements

- Python 3.6
- PyTorch
- [hb-config](https://github.com/hb-research/hb-config) (Singleton Config)
- [Slack Incoming Webhook URL](https://my.slack.com/services/new/incoming-webhook/)

## Project Structure

.
├── config # Config files (.yml, .json) using with hb-config
├── gan # Generative Adversarial Networks architecture
├── __init__.py # train, evaluate, predict logic
├── module.py # Discriminator, Generator module
└── utils.py # Save and Load Model, TensorBoard
├── data_loader.py # make_data_loader (using DataLoader)
├── main.py
├── model.py # define Model Spec
└── model.py # utils

Reference : [hb-config](https://github.com/hb-research/hb-config)

- Manage experiments like [tf.Estimator](https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator)

## Config

Can control all **Experimental environment**.

example: config.yml

```yml
data:
path: "data/"

model:
z_dim: 100 # Random noise dimension coming into generator, per output vector
real_dim: 784

g_h1: 256
g_h2: 512
g_h3: 1024

d_h1: 1024
d_h2: 512
d_h3: 256

dropout: 0.3

train:
model_dir: "logs/gan"
batch_size: 64
train_steps: 50000

d_learning_rate: 0.0002 # 2e-4
g_learning_rate: 0.0002
optim_betas:
- 0.9
- 0.999

save_checkpoints_steps: 1000
verbose_step_count: 100

predict:
batch_size: 64

slack:
webhook_url: "" # after training notify you using slack-webhook
```

## Usage

Install requirements.

```pip install -r requirements.txt```

Then, start training

```python main.py --mode train```

After training, generate images

```python main.py --mode predict```

- generated image example

![images](images/generate_images.png)

### Experiments modes

:white_check_mark: : Working
:white_medium_small_square: : Not tested yet.

- :white_medium_small_square: `evaluate` : Evaluate on the evaluation data.
- :white_check_mark: `train` : Fit the estimator using the training data.
- :white_medium_small_square: `train_and_evaluate` : Interleaves training and evaluation.
- :white_check_mark: `predict` : Generate images.

---

### Tensorboar

```tensorboard --logdir logs```

- example

![images](images/tensorboard-example.png)

## Reference
- [hb-research/notes - Generative Adversarial Nets](https://github.com/hb-research/notes/blob/master/notes/gan.md)
- [Paper - Generative Adversarial Nets](https://arxiv.org/abs/1406.2661)
- [pytorch-tutorial](https://github.com/yunjey/pytorch-tutorial)

## Author

[Dongjun Lee](https://github.com/DongjunLee) ([email protected])