Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/douglasrizzo/fruit_detection_interview
https://github.com/douglasrizzo/fruit_detection_interview
Last synced: 25 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/douglasrizzo/fruit_detection_interview
- Owner: douglasrizzo
- Created: 2021-06-24T08:48:26.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2024-03-13T23:24:16.000Z (11 months ago)
- Last Synced: 2024-12-17T19:28:28.746Z (about 1 month ago)
- Language: Jupyter Notebook
- Size: 88.9 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# 2021 ML and Com. Vis. Engineer, Problem 2
- Training and evaluation report available [here](https://wandb.ai/tetamusha/fruit_detection_torchvision/reports/Detecting-oranges-with-TorchVision--Vmlldzo4MDAyNzM)
- The Jupyter Notebook + PDF contain a dataset study, which allowed me to discover the number of object classes, object annotations, bounding box aspect ratios and size in pixels.
- The code is basically aa usage example of the code in [this other repository](https://github.com/douglasrizzo/fruit_detection).The best model trained for the problem used the following arguments:
python train.py --batch_size 4 --num_workers 4 --backbone mobilenet --detector fasterrcnn --augmentations imgaug --epochs 350 --lr_initial 0.0005 --lr_final 0.00001 --lr_updates 50 --eval_size 0.1 --img_min_size 1920 --img_max_size 1920