Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dqshuai/MetaFormer
A PyTorch implementation of "MetaFormer: A Unified Meta Framework for Fine-Grained Recognition". A reference PyTorch implementation of “CoAtNet: Marrying Convolution and Attention for All Data Sizes”
https://github.com/dqshuai/MetaFormer
fine-grained-classification pytorch
Last synced: 2 months ago
JSON representation
A PyTorch implementation of "MetaFormer: A Unified Meta Framework for Fine-Grained Recognition". A reference PyTorch implementation of “CoAtNet: Marrying Convolution and Attention for All Data Sizes”
- Host: GitHub
- URL: https://github.com/dqshuai/MetaFormer
- Owner: dqshuai
- License: mit
- Created: 2022-03-05T11:05:42.000Z (almost 3 years ago)
- Default Branch: master
- Last Pushed: 2022-04-24T13:25:03.000Z (over 2 years ago)
- Last Synced: 2024-08-02T15:36:17.512Z (6 months ago)
- Topics: fine-grained-classification, pytorch
- Language: Python
- Homepage:
- Size: 578 KB
- Stars: 212
- Watchers: 6
- Forks: 36
- Open Issues: 17
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/metaformer-a-unified-meta-framework-for-fine/fine-grained-image-classification-on-cub-200)](https://paperswithcode.com/sota/fine-grained-image-classification-on-cub-200?p=metaformer-a-unified-meta-framework-for-fine)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/metaformer-a-unified-meta-framework-for-fine/fine-grained-image-classification-on-nabirds)](https://paperswithcode.com/sota/fine-grained-image-classification-on-nabirds?p=metaformer-a-unified-meta-framework-for-fine)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/metaformer-a-unified-meta-framework-for-fine/image-classification-on-inaturalist)](https://paperswithcode.com/sota/image-classification-on-inaturalist?p=metaformer-a-unified-meta-framework-for-fine)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/metaformer-a-unified-meta-framework-for-fine/image-classification-on-inaturalist-2018)](https://paperswithcode.com/sota/image-classification-on-inaturalist-2018?p=metaformer-a-unified-meta-framework-for-fine)
# MetaFormer
A repository for the code used to create and train the model defined in “MetaFormer: A Unified Meta Framework for Fine-Grained Recognition” [arxiv:2203.02751](http://arxiv.org/abs/2203.02751)
![Image text](figs/overview.png)
Moreover, MetaFormer is similar to CoAtNet. Therefore, this repo can also be seen as a reference PyTorch implementation of “CoAtNet: Marrying Convolution and Attention for All Data Sizes” [arxiv:2106.04803](https://arxiv.org/abs/2106.04803)
![Image text](figs/stucture_of_metafg.png)
## Model zoo
| name | resolution | 1k model | 21k model | iNat21 model |
| :--------: | :----------: | :--------: | :----------: | :------------: |
| MetaFormer-0 | 224x224 | [metafg_0_1k_224](https://drive.google.com/file/d/1BYbe3mrKioN-Ara6hhJiaiEgJLl_thSH/view?usp=sharing)|[metafg_0_21k_224](https://drive.google.com/file/d/1834jQ9OPHOBZDgv7jD6Qu5mNLsD9aeZv/view?usp=sharing)|-|
| MetaFormer-1 | 224x224 | [metafg_1_1k_224](https://drive.google.com/file/d/1p-nIZgnrDatqmSzzDknTFYw-yEEUD_Rz/view?usp=sharing)|[metafg_1_21k_224](https://drive.google.com/file/d/1AcybDVEY-kXFT0D79w1G7I0h4r1IxLlG/view?usp=sharing)|-|
| MetaFormer-2 | 224x224 | [metafg_2_1k_224](https://drive.google.com/file/d/1K6EEyFKbMUBpPqaEJMvo93YHTXCsgH2V/view?usp=sharing)|[metafg_2_21k_224](https://drive.google.com/file/d/1VygaD_IwYq25KwoupWfttKRZUm2_SPeK/view?usp=sharing)|-|
| MetaFormer-0 | 384x384 | [metafg_0_1k_384](https://drive.google.com/file/d/1r62S3CJFRWV_qA5udC9MOFOJYwRf8mE2/view?usp=sharing) | [metafg_0_21k_384](https://drive.google.com/file/d/1wVmlPjNTA6JKHcF3ROGorEVPxKVO83Ss/view?usp=sharing) | [metafg_0_inat21_384](https://drive.google.com/file/d/11gCk_IuSN7krdkOUSWSM4xlf8GGknmxc/view?usp=sharing) |
| MetaFormer-1 | 384x384 | [metafg_1_1k_384](https://drive.google.com/file/d/12OTmZg4J6fMGvs-colOTDfmhdA5EMMvo/view?usp=sharing) | [metafg_1_21k_384](https://drive.google.com/file/d/13dsarbtsNrkhpG5XpCRlN5ogXDGXO3Z_/view?usp=sharing) | [metafg_1_inat21_384](https://drive.google.com/file/d/1ATUIrDxaQaGqx4lJ8HE2IwX_evMhblPu/view?usp=sharing) |
| MetaFormer-2 | 384x384 | [metafg_2_1k_384](https://drive.google.com/file/d/167oBaseORq32aFA3Ex6lpHuasvu2PMb8/view?usp=sharing) | [metafg_2_21k_384](https://drive.google.com/file/d/1PnpntloQaYduEokFGQ6y79G7DdyjD_u3/view?usp=sharing) | [metafg_2_inat21_384](https://drive.google.com/file/d/17sUNST7ivQhonBAfZEiTOLAgtaHa4F3e/view?usp=sharing) |You can also get model by https://pan.baidu.com/s/1ZGEDoWWU7Z0vx0VCjEbe6g (password:3uiq).
## Usage
#### python module
* install `Pytorch and torchvision`
```
pip install torch==1.5.1 torchvision==0.6.1
```
* install `timm`
```
pip install timm==0.4.5
```
* install `Apex`
```
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
* install other requirements
```
pip install opencv-python==4.5.1.48 yacs==0.1.8
```
#### data preparation
Download [inat21,18,17](https://github.com/visipedia/inat_comp),[CUB](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html),[NABirds](https://dl.allaboutbirds.org/nabirds),[stanfordcars](https://ai.stanford.edu/~jkrause/cars/car_dataset.html), and [aircraft](https://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/), put them in respective folders (\/datasets/) and Unzip file. The folder sturture as follow:
```
datasets
|————inraturelist2021
| └——————train
| └——————val
| └——————train.json
| └——————val.json
|————inraturelist2018
| └——————train_val_images
| └——————train2018.json
| └——————val2018.json
| └——————train2018_locations.json
| └——————val2018_locations.json
| └——————categories.json.json
|————inraturelist2017
| └——————train_val_images
| └——————train2017.json
| └——————val2017.json
| └——————train2017_locations.json
| └——————val2017_locations.json
|————cub-200
| └——————...
|————nabirds
| └——————...
|————stanfordcars
| └——————car_ims
| └——————cars_annos.mat
|————aircraft
| └——————...
```
#### Training
You can dowmload pre-trained model from model zoo, and put them under \/pretrained.
To train MetaFG on datasets, run:
```
python3 -m torch.distributed.launch --nproc_per_node --master_port 12345 main.py --cfg --dataset --pretrain [--batch-size --output --tag ]
```
\:inaturelist2021,inaturelist2018,inaturelist2017,cub-200,nabirds,stanfordcars,aircraft
For CUB-200-2011, run:
```
python3 -m torch.distributed.launch --nproc_per_node 8 --master_port 12345 main.py --cfg ./configs/MetaFG_1_224.yaml --batch-size 32 --tag cub-200_v1 --lr 5e-5 --min-lr 5e-7 --warmup-lr 5e-8 --epochs 300 --warmup-epochs 20 --dataset cub-200 --pretrain ./pretrained_model/.pth --accumulation-steps 2 --opts DATA.IMG_SIZE 384
```
note that final learning rate is total_bs/512.
#### Eval
To evaluate model on dataset,run:
```
python3 -m torch.distributed.launch --nproc_per_node --master_port 12345 main.py --eval --cfg --dataset --resume [--batch-size ]
```
## Main Result
#### ImageNet-1k
| Name | Resolution | #Param | #FLOPS | Throughput | Top-1 acc |
| :--------: | :----------: | :--------: | :----------: | :------------: | :------------: |
| MetaFormer-0 | 224x224 | 28M | 4.6G | 840.1 | 82.9 |
| MetaFormer-1 | 224x224 | 45M | 8.5G | 444.8 | 83.9 |
| MetaFormer-2 | 224x224 | 81M | 16.9G | 438.9 | 84.1 |
| MetaFormer-0 | 384x384 | 28M | 13.4G | 349.4 | 84.2 |
| MetaFormer-1 | 384x384 | 45M | 24.7G | 165.3 | 84.4 |
| MetaFormer-2 | 384x384 | 81M | 49.7G | 132.7 | 84.6 |
#### Fine-grained Datasets
Result on fine-grained datasets with different pre-trained model.
| Name | Pretrain | CUB | NABirds | iNat2017 | iNat2018 | Cars | Aircraft |
| :--------: | :----------: | :--------: | :----------: | :------------: | :------------: | :--------: |:--------: |
| MetaFormer-0|ImageNet-1k|89.6|89.1|75.7|79.5|95.0|91.2|
| MetaFormer-0|ImageNet-21k|89.7|89.5|75.8|79.9|94.6|91.2|
| MetaFormer-0|iNaturalist 2021|91.8|91.5|78.3|82.9|95.1|87.4|
| MetaFormer-1|ImageNet-1k|89.7|89.4|78.2|81.9|94.9|90.8|
| MetaFormer-1|ImageNet-21k|91.3|91.6|79.4|83.2|95.0|92.6|
| MetaFormer-1|iNaturalist 2021|92.3|92.7|82.0|87.5|95.0|92.5|
| MetaFormer-2|ImageNet-1k|89.7|89.7|79.0|82.6|95.0|92.4|
| MetaFormer-2|ImageNet-21k|91.8|92.2|80.4|84.3|95.1|92.9|
| MetaFormer-2|iNaturalist 2021|92.9|93.0|82.8|87.7|95.4|92.8|Results in iNaturalist 2019, iNaturalist 2018, and iNaturalist 2021 with meta-information.
| Name | Pretrain | Meta added| iNat2017 | iNat2018 | iNat2021 |
| :--------: | :----------: | :--------: | :---------- | :------------ |:------------ |
|MetaFormer-0|ImageNet-1k|N|75.7|79.5|88.4|
|MetaFormer-0|ImageNet-1k|Y|79.8(+4.1)|85.4(+5.9)|92.6(+4.2)|
|MetaFormer-1|ImageNet-1k|N|78.2|81.9|90.2|
|MetaFormer-1|ImageNet-1k|Y|81.3(+3.1)|86.5(+4.6)|93.4(+3.2)|
|MetaFormer-2|ImageNet-1k|N|79.0|82.6|89.8|
|MetaFormer-2|ImageNet-1k|Y|82.0(+3.0)|86.8(+4.2)|93.2(+3.4)|
|MetaFormer-2|ImageNet-21k|N|80.4|84.3|90.3|
|MetaFormer-2|ImageNet-21k|Y|83.4(+3.0)|88.7(+4.4)|93.6(+3.3)|
## Citation```
@article{MetaFormer,
title={MetaFormer: A Unified Meta Framework for Fine-Grained Recognition},
author={Diao, Qishuai and Jiang, Yi and Wen, Bin and Sun, Jia and Yuan, Zehuan},
journal={arXiv preprint arXiv:2203.02751},
year={2022},
}
```## Acknowledgement
Many thanks for [swin-transformer](https://github.com/microsoft/Swin-Transformer).A part of the code is borrowed from it.