https://github.com/dragen1860/introvae-pytorch
Pytorch Implementation for paper: IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis
https://github.com/dragen1860/introvae-pytorch
Last synced: 6 months ago
JSON representation
Pytorch Implementation for paper: IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis
- Host: GitHub
- URL: https://github.com/dragen1860/introvae-pytorch
- Owner: dragen1860
- Created: 2018-12-05T08:34:26.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2018-12-10T04:12:26.000Z (almost 7 years ago)
- Last Synced: 2025-03-30T17:11:10.290Z (7 months ago)
- Language: Python
- Homepage:
- Size: 1.69 MB
- Stars: 39
- Watchers: 4
- Forks: 11
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# IntroVAE-Pytorch
Pytorch Implementation for NeuraIPS2018 paper:
[IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis](https://arxiv.org/abs/1807.06358).The rep. contains a basic implementation for IntroVAE. However, due to no official implementation released, some hyperparameters can only be guessed and can not reach the performance as stated in paper.

# HowTo
1. Download [CelebA](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html) dataset and extract it as:
```
├── /home/i/dbs/
├──img_align_celeba # only one folder in this directory
├── 050939.jpg
├── 050940.jpg
├── 050941.jpg
├── 050942.jpg
├── 050943.jpg
├── 050944.jpg
├── 050945.jpg
```modify `/home/i/dbs` to your specific path, making sure that the `/home/i/dbs/` comtains only ONE folder since we use
`torchvision.datasets.ImageFolder` API to load dataset.
```python
argparser.add_argument('--root', type=str, default='/home/i/dbs/',
help='root/label/*.jpg')
```2. run `python main.py --epoch 750000` to train from strach, and use `python main.py --resume '' --epoch 1000000` to resume training from latest checkpoint.
# Training
only tested for CelebA 128x128 exp.
- training curves
- sampled x
