https://github.com/drankush/miracle-api
🫀 SCMR 2026 Open Source Innovation Submission. MIRACLE is an open-source API that provides evidence-based reference values for cardiovascular magnetic resonance (CMR) measurements. It standardizes the interpretation of CMR studies by offering instant access to peer-reviewed normal ranges across multiple clinical domains.
https://github.com/drankush/miracle-api
api cardiac cardiology chatbot clinical llm mcp mri radiology reference
Last synced: 29 days ago
JSON representation
🫀 SCMR 2026 Open Source Innovation Submission. MIRACLE is an open-source API that provides evidence-based reference values for cardiovascular magnetic resonance (CMR) measurements. It standardizes the interpretation of CMR studies by offering instant access to peer-reviewed normal ranges across multiple clinical domains.
- Host: GitHub
- URL: https://github.com/drankush/miracle-api
- Owner: drankush
- License: mit
- Created: 2025-08-25T10:17:46.000Z (about 1 month ago)
- Default Branch: main
- Last Pushed: 2025-08-28T10:34:07.000Z (about 1 month ago)
- Last Synced: 2025-08-28T17:23:46.081Z (about 1 month ago)
- Topics: api, cardiac, cardiology, chatbot, clinical, llm, mcp, mri, radiology, reference
- Language: JavaScript
- Homepage: https://miracleapi.readme.io
- Size: 178 KB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
![]()
MIRACLE API
MR Imaging Reference API for Cardiovascular Limits from Evidence
[](https://github.com/drankush/MIRACLE)
[](https://miracleapi.readme.io)
[](https://developers.google.com/apps-script)
[](https://scmr.org)
[](https://opensource.org/licenses/MIT)
[](https://miracle-chat.netlify.app)
[](https://miracle-app.surge.sh)
🫀 SCMR 2026 Open Source Innovation Submission
## 🌟 Introduction
MIRACLE is an open-source API that provides evidence-based reference values for cardiovascular magnetic resonance (CMR) measurements. It standardizes the interpretation of CMR studies by offering instant access to peer-reviewed normal ranges, z-scores, and percentiles across multiple clinical domains.
## 🚀 Live Demos
- **Pediatric CMR Reference Calculator**: [miracle-app.surge.sh](https://miracle-app.surge.sh/)
- **Interactive Chatbot**: [miracle-chat.netlify.app](https://miracle-chat.netlify.app) [](https://app.netlify.com/projects/miracle-chat/deploys)## ✨ Key Features
- 📊 Evidence-based reference values
- 🔓 Open-access API
- 🏥 Multiple clinical domains
- 🧮 Real-time z-score calculations
- 📈 Percentile computations
- 🤖 AI/LLM integration ready
- 📱 REST API with flexible endpoints🔗 [View Full API Documentation](https://miracleapi.readme.io/)
## 🛠️ Getting Started
### Basic API Call
```bash
curl --request GET \
--url 'https://script.google.com/macros/s/.../exec?domain=Pediatric_Ventricle¶meter=LVEDV&gender=Male' \
--header 'accept: application/json'
```### Code Examples
Python
```python
import requestsurl = "https://script.google.com/macros/s/.../exec?domain=Pediatric_Ventricle¶meter=LVEDV&gender=Male"
headers = {"accept": "application/json"}
response = requests.get(url, headers=headers)
print(response.text)
```JavaScript
```javascript
const options = {method: 'GET', headers: {accept: 'application/json'}};fetch('https://script.google.com/macros/s/.../exec?domain=Pediatric_Ventricle¶meter=LVEDV&gender=Male', options)
.then(res => res.json())
.then(res => console.log(res))
.catch(err => console.error(err));
```## 📚 API Endpoints
### Adult Cardiac| **Left Ventricle** | [Volumetric](https://miracleapi.readme.io/reference/getlvreferencevalues#/) | [Volumetric by Age](https://miracleapi.readme.io/reference/getlv_agereferencevalues#/) | [Functional and Geometric](https://miracleapi.readme.io/reference/getlvreference#/) | [Myocardial Thickness](https://miracleapi.readme.io/reference/getlvmtreferencevalues#/) |
|:--|:--|:--|:--|:--|
| | [Global Strain](https://miracleapi.readme.io/reference/getlv_strain_values#/) | [Fractal Dimension by BMI](https://miracleapi.readme.io/reference/getlv_fd_bmi_values#/) | [Fractal Dimension by Ethnicity](https://miracleapi.readme.io/reference/getlv_fd_ethnicity_values#/) | |
| **Right Ventricle** | [Volumetric](https://miracleapi.readme.io/reference/getrv_values#/) | [Volumetric by Age](https://miracleapi.readme.io/reference/getrv_age_values#/) | | |
| **Left Atrium** | [Diameter & Area](https://miracleapi.readme.io/reference/getla_da_values#/) | [Volume & Function](https://miracleapi.readme.io/reference/getla_vf_values#/) | | |
| **Right Atrium** | [Diameter & Area](https://miracleapi.readme.io/reference/getra_da_values#/) | [Volume & Function](https://miracleapi.readme.io/reference/getra_vf_values#/) | | |
| **Other** | [Athletes](https://miracleapi.readme.io/reference/getathletereferencevalues#/) | [T1/ECV](https://miracleapi.readme.io/reference/gett1_relax_values#/) | [T2 Relaxation](https://miracleapi.readme.io/reference/gett2relaxationvalues#/) | [Myocardial Blood Flow](https://miracleapi.readme.io/reference/getmbf_values#/) |### Adult Vascular
| Aortic Root & Valve | Ascending Aorta | Thoracic Aorta | Aortic Elasticity | Pulmonary Artery |
|:---:|:---:|:---:|:---:|:---:|
| [Aortic Root Diameter](https://miracleapi.readme.io/reference/getaortic_root_d_values#/) | [Ascending Aortic Diameter](https://miracleapi.readme.io/reference/getaa_d_values#/) | [Thoracic Aorta Diameter](https://miracleapi.readme.io/reference/getta_d_values#/) | [Aortic Distensibility by Age](https://miracleapi.readme.io/reference/getadult_aa_distensibility_values#/) | [Adult Pulmonary Artery Dimensions](https://miracleapi.readme.io/reference/getadultpareferencevalues#/) |
| [Aortic Sinus Diameters and Area](https://miracleapi.readme.io/reference/getasl_da_values#/) | [Ascending Aorta Peak Velocity by Age](https://miracleapi.readme.io/reference/getmpsv_aa_4d_values#/) | [Thoracic Aorta Wall Thickness, Luminal Diameter](https://miracleapi.readme.io/reference/getta_d_a_wl_values#/) | [Aortic PWV by Age](https://miracleapi.readme.io/reference/getadult_pwv_values#/) | |
| [Aortic Valve Peak Velocity](https://miracleapi.readme.io/reference/getmavpv_4d_values#/) | | | | |### Pediatric Cardiac
| Cardiac | Vascular |
|:---:|:---:|
| [Atrial Volumes](https://miracleapi.readme.io/reference/getpediatricreferencevalues-1#/) | [Aortic CSA](https://miracleapi.readme.io/reference/getpeds_aorta_csa_zscore#/) |
| [Ventricular Parameters](https://miracleapi.readme.io/reference/getpediatricventriclereferencevalues#/) | [Ascending Aorta Distensibility](https://miracleapi.readme.io/reference/getpeds_aa_distensibility_zscore#/) |
| | [Pulse Wave Velocity](https://miracleapi.readme.io/reference/getpeds_pwv_zscore#/) |
| | [Aortic Diameter](https://miracleapi.readme.io/reference/getpedsaorticd#/) |
| | [Pulmonary Artery Diameters](https://miracleapi.readme.io/reference/getpeds_pa_values#/) |Full documentation available at [miracleapi.readme.io](https://miracleapi.readme.io)
## 🏥 For the SCMR Community
### Ready-to-Use Applications
1. **Pediatric CMR Z-score Calculator Web App**
- React-based frontend with Material-UI components
- Real-time validation and calculation
- RESTful API integration with error handling
- Mobile-responsive design
- Print support
- [Live Demo](https://miracle-app.surge.sh/) | [Source Code](https://github.com/drankush/MIRACLE-webapp)2. **Virtual CMR Report Generator**
- Batch processing of multiple parameters
- Customizable report templates using Handlebars
- Export options: PDF, DOCX, JSON
- Integration examples with clinical systems
```javascript
// Example report generation
const report = await miracleAPI.generateReport({
patient: { gender: "Male", height: 110, weight: 22 },
measurements: {
LVEDV: 62,
LVEF: 60,
LVM: 45
},
template: "pediatric_standard"
});
```3. **LLM-Powered Chatbot**
- OpenAI/Groq function calling architecture
- Natural language parsing with structured output
- Context-aware conversation handling
- Error boundary implementation
- [Live Demo](https://miracle-chat.netlify.app) | [Source Code](https://github.com/drankush/MIRACLE-ChatBot)
```javascript
// Example function calling schema
{
"name": "getPediatricVentricleZScore",
"parameters": {
"type": "object",
"properties": {
"gender": { "type": "string", "enum": ["Male", "Female"] },
"parameter": { "type": "string", "enum": ["LVEDV", "LVEF", "LVM"] },
"measured": { "type": "number" },
"ht_cm": { "type": "number" },
"wt_kg": { "type": "number" }
}
}
}
```### AI/LLM Integration
#### LLM-Ready Documentation
- Structured markdown format at `/llms.txt`
- Automated updates via GitHub Actions
- Endpoint schemas in OpenAPI 3.0
```bash
curl https://miracleapi.readme.io/llms.txt
# Returns markdown-formatted documentation
```#### Model Context Protocol (MCP)
- OpenAPI specification at `/mcp`
- JSON Schema validation
- Rate limiting information
- Authentication requirements
- Read [Documentation](https://miracleapi.readme.io/reference/mcp#/)
```bash
curl https://miracleapi.readme.io/mcp
# Returns OpenAPI specification
```#### Function Calling Support
- OpenAI-compatible function definitions
- Anthropic Claude-ready schemas
- Groq API integration examples
- Error handling patterns
```python
# Example function registration with OpenAI
tools = [{
"type": "function",
"function": {
"name": "getPediatricReferenceValues",
"description": "Get z-scores for pediatric CMR measurements",
"parameters": { ... }
}
}]
```### Research Tools
#### Current Capabilities
```python
# Example: Basic batch processing with current API
import pandas as pd
import requestsdef process_cmr_data(data_df):
base_url = "https://script.google.com/macros/s/.../exec"
results = []
for _, row in data_df.iterrows():
params = {
"domain": "Pediatric_Ventricle",
"parameter": row["parameter"],
"gender": row["gender"],
"measured": row["value"],
"ht_cm": row["height"],
"wt_kg": row["weight"]
}
response = requests.get(base_url, params=params)
results.append(response.json())
return pd.DataFrame(results)# Usage
df = pd.read_csv("measurements.csv")
results_df = process_cmr_data(df)
results_df.to_csv("results_with_zscores.csv")
```#### 🛣️ Future Roadmap (Planned Features)
1. **Python Package Development**
- Dedicated `miracle-py` package
- Easy-to-use batch processing
- Statistical analysis utilities
```python
# Future API (not yet implemented)
from miracle import MiracleBatch
processor = MiracleBatch()
results = processor.process_csv(...)
```2. **Research Integration Tools**
- DICOM SR templates
- REDCap integration
- Data validation suite
```python
# Planned feature
from miracle.export import DicomSRExport # Coming soon
```3. **Statistical Analysis Module**
- Advanced z-score calculations
- Multiple BSA formulas
- Automated outlier detection
```python
# Future enhancement
from miracle.stats import calculate_zscore # Planned
```## 📖 Citation
```bibtex
@software{Ankush_MIRACLE_2025,
author = {Ankush, Ankush},
title = {MIRACLE: MR Imaging Reference API for Cardiovascular Limits from Evidence},
year = {2025},
publisher = {GitHub},
url = {https://github.com/drankush/MIRACLE-API}
}
```## 📄 License
MIT License - See [LICENSE](LICENSE) for details
---