Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dreamhomes/PCIC-2021-Track1
PCIC 2021 Track1: Causal Discovery
https://github.com/dreamhomes/PCIC-2021-Track1
Last synced: 15 days ago
JSON representation
PCIC 2021 Track1: Causal Discovery
- Host: GitHub
- URL: https://github.com/dreamhomes/PCIC-2021-Track1
- Owner: dreamhomes
- Created: 2021-06-22T06:29:43.000Z (over 3 years ago)
- Default Branch: master
- Last Pushed: 2021-06-23T07:39:09.000Z (over 3 years ago)
- Last Synced: 2024-08-01T16:28:01.793Z (3 months ago)
- Language: Jupyter Notebook
- Size: 5.32 MB
- Stars: 25
- Watchers: 3
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## PCIC 2021 Track1: Causal Discovery
AIOps 相关:多告警间因果关系图学习,并辅助定位根因。
竞赛地址:[https://competition.huaweicloud.com/information/1000041487/introduction](https://competition.huaweicloud.com/information/1000041487/introduction)
赛题解读:[PCIC 2021 | 华为 & 北京大学因果推理挑战赛](https://dreamhomes.top/posts/202106211024.html)
---
Baselines:
- TTPM (with topology)
- Cite: [THP: Topological Hawkes Processes for Learning Granger Causality on Event Sequences](https://arxiv.org/abs/2105.10884)
- Code: [https://nbviewer.jupyter.org/github/dreamhomes/PCIC-2021-Track1/blob/master/notebooks/baseline.ipynb](https://nbviewer.jupyter.org/github/dreamhomes/PCIC-2021-Track1/blob/master/notebooks/TTPM.ipynb)