Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/drewszurko/tensorflow-WGAN-GP
TensorFlow 2.0 implementation of Improved Training of Wasserstein GANs
https://github.com/drewszurko/tensorflow-WGAN-GP
tensorflow tensorflow-datasets tensorflow-wgan-gp tensorflow2 wasserstein-gan wgan-gp
Last synced: about 10 hours ago
JSON representation
TensorFlow 2.0 implementation of Improved Training of Wasserstein GANs
- Host: GitHub
- URL: https://github.com/drewszurko/tensorflow-WGAN-GP
- Owner: drewszurko
- License: mit
- Created: 2019-05-28T02:43:49.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-05-28T23:45:05.000Z (over 5 years ago)
- Last Synced: 2024-08-02T19:01:44.402Z (3 months ago)
- Topics: tensorflow, tensorflow-datasets, tensorflow-wgan-gp, tensorflow2, wasserstein-gan, wgan-gp
- Language: Python
- Homepage: https://arxiv.org/abs/1704.00028
- Size: 11.7 KB
- Stars: 26
- Watchers: 3
- Forks: 7
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-Tensorflow2 - drewszurko/tensorflow-WGAN-GP
README
# TensorFlow 2.0 WGAN-GP
TensorFlow 2.0 implementation of Improved Training of Wasserstein GANs [[1]](https://arxiv.org/abs/1704.00028).
New/existing TensorFlow features found in this repository include eager execution, AutoGraph, Keras high-level API, and TensorFlow Datasets.## Requirements
* [Python 3](https://www.python.org/)
* [Abseil](https://abseil.io/)
* [NumPy](http://www.numpy.org/)
* [TensorFlow >= 2.0](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf)
* [TensorFlow Datasets](https://www.tensorflow.org/datasets/)
* [tqdm](https://tqdm.github.io/)## Datasets
* [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html)
* [CelebA](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
* [TF Flowers](http://download.tensorflow.org/example_images/flower_photos.tgz)
* [Oxford Flowers 102](https://www.robots.ox.ac.uk/~vgg/data/flowers/102/)
* [Oxford-IIIT pet](http://www.robots.ox.ac.uk/~vgg/data/pets/)## Usage
**Install requirements**
```
$ pip install -r requirements.txt
```**Train model**
```
$ python main.py -dataset celeb_a -batch_size 64 -image_size 64
```## References
[1] [Improved Training of Wasserstein GANs](https://arxiv.org/abs/1704.00028)