Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/drlordbasil/experimental_python_agents
A collection of Python functions that leverage Large Language Models (LLMs) to replace traditional programming functions and libraries. The goal is to create a library where every operation is handled by LLM responses rather than hardcoded functions.
https://github.com/drlordbasil/experimental_python_agents
ai functional-programming functions ollama openai
Last synced: about 19 hours ago
JSON representation
A collection of Python functions that leverage Large Language Models (LLMs) to replace traditional programming functions and libraries. The goal is to create a library where every operation is handled by LLM responses rather than hardcoded functions.
- Host: GitHub
- URL: https://github.com/drlordbasil/experimental_python_agents
- Owner: Drlordbasil
- Created: 2024-11-09T13:25:13.000Z (2 months ago)
- Default Branch: AI-Created-Programs
- Last Pushed: 2024-11-09T16:13:47.000Z (2 months ago)
- Last Synced: 2025-01-05T08:53:34.859Z (4 days ago)
- Topics: ai, functional-programming, functions, ollama, openai
- Language: Python
- Homepage:
- Size: 159 KB
- Stars: 3
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# LLM-Powered Function Library: Reimagining Software Functions as Language Models
## Project Structure
```
experimental_python_agents/
├── README.md # Project overview and documentation
├── config.py # Configuration for LLM models and logging
├── main.py # Main showcase of all functions
├── requirements.txt # Project dependencies
├── basic_functions/ # Core LLM Function Agents
│ ├── __init__.py
│ ├── math_function.py # Mathematical operations
│ ├── string_function.py # String manipulations
│ ├── embedding_function.py # Text embeddings
│ ├── vision_function.py # Image analysis
│ ├── web_function.py # Web component generation
│ └── debug_function.py # Error analysis
└── applications/ # Practical Implementations
└── code_reviewer/ # Code review system
├── reviewer.py
├── test_reviewer.py
└── reports/
```## Core Concept
This project reimagines traditional programming functions as LLM-powered agents. Instead of writing static functions, we use LLMs to create dynamic, context-aware operations that adapt to input and provide intelligent outputs.## Current Functions
### Basic Functions
1. **Math Function** (`math_function.py`)
- Natural language math processing
- Direct numerical output
- Example: `math_function("What is 15% of 200?")`2. **String Function** (`string_function.py`)
- Text transformations (reverse, capitalize)
- Word counting
- Punctuation handling
- Example: `string_function("reverse", "Hello World")`3. **Vision Function** (`vision_function.py`)
- Image analysis and captioning
- Uses llama3.2-vision:11b model
- Example: `vision_function("analyze", "image.png")`4. **Web Function** (`web_function.py`)
- HTML/CSS generation
- Component creation
- Example: `web_function("component", "Create a login form")`5. **Embedding Function** (`embedding_function.py`)
- Text vectorization using nomic-embed-text
- Example: `embedding_function("Convert this text to vectors")`6. **Debug Function** (`debug_function.py`)
- Error analysis and solutions
- Root cause identification
- Example: `debug_function(error_info, context)`### Applications
#### Code Review System
- Located in `applications/code_reviewer/`
- Analyzes code quality
- Suggests optimizations
- Generates documentation
- Creates markdown reports## Requirements
- Python 3.x
- Ollama running locally
- OpenAI library for API structure
- Required Ollama models:
- smollm2:1.7b (text generation)
- llama3.2-vision:11b (vision processing)
- nomic-embed-text (embeddings)## Quick Start
```bash
# Install dependencies
pip install -r requirements.txt# Pull required Ollama models
ollama pull smollm2:1.7b
ollama pull llama3.2-vision:11b
ollama pull nomic-embed-text
```## Usage Example
```python
from basic_functions import math_function, string_function, vision_function# Math operations
result = math_function("2 + 2=")
print(f"Math result: {result}")# String operations
text = string_function("reverse", "Hello World")
print(f"Reversed text: {text}")# Image analysis
description = vision_function("caption", "image.png")
print(f"Image caption: {description}")
```## Future Development
1. Enhanced error handling
2. Additional function agents
3. More practical applications
4. Performance optimizations
5. Extended documentation