Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/drujensen/weight
example linear regression using SHAInet
https://github.com/drujensen/weight
Last synced: 10 days ago
JSON representation
example linear regression using SHAInet
- Host: GitHub
- URL: https://github.com/drujensen/weight
- Owner: drujensen
- License: mit
- Created: 2018-05-07T14:17:01.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2021-11-18T05:28:43.000Z (about 3 years ago)
- Last Synced: 2024-10-25T01:35:40.824Z (about 2 months ago)
- Language: Crystal
- Size: 167 KB
- Stars: 2
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# weight
Example SHAInet model to perform linear regression using Height/Weight.
Below is a Keras equivalent model:
```python
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import SGDdf = pd.read_csv('./data/weight-height.csv')
X = df[['Height']].values
Y = df['Weight'].valuesmodel = Sequential()
model.add(Dense(1, input_shape=(1,)))
model.compile(SGD(lr=0.01), 'mean_squared_error')
model.fit(X, Y, epochs=40)
model.predict([75])
```## Installation
Requires Crystal 0.24.2
## Usage
`crystal src/weight.cr`
## Development
Experimenting with different models. Currently Adam is failing with NaN errors. SGDM seems to provide fairly accurate results.
## Contributing
1. Fork it ( https://github.com/drujensen/weight/fork )
2. Create your feature branch (git checkout -b my-new-feature)
3. Commit your changes (git commit -am 'Add some feature')
4. Push to the branch (git push origin my-new-feature)
5. Create a new Pull Request## Contributors
- [drujensen](https://github.com/drujensen) Dru Jensen - creator, maintainer