Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/dsksd/deepnlp-models-pytorch

Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ)
https://github.com/dsksd/deepnlp-models-pytorch

cs-224n deep-learning deep-nlp-models natural-language-processing neural-network nlp pytorch rnn stanford-univ

Last synced: 4 days ago
JSON representation

Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ)

Awesome Lists containing this project

README

        

# DeepNLP-models-Pytorch

Pytorch implementations of various Deep NLP models in cs-224n(Stanford Univ: NLP with Deep Learning)

- This is not for Pytorch beginners. If it is your first time to use Pytorch, I recommend these [awesome tutorials](#references).
- If you're interested in DeepNLP, I strongly recommend you to work with this awesome lecture.

* cs-224n-slides
* cs-224n-videos

This material is not perfect but will help your study and research:) Please feel free to pull requests!!


## Contents

| Model | Links |
| ------------- |:-------------:|
| 01. Skip-gram-Naive-Softmax | [notebook / data / paper] |
| 02. Skip-gram-Negative-Sampling | [notebook / data / paper] |
| 03. GloVe | [notebook / data / paper] |
| 04. Window-Classifier-for-NER | [notebook / data / paper] |
| 05. Neural-Dependancy-Parser | [notebook / data / paper] |
| 06. RNN-Language-Model | [notebook / data / paper] |
| 07. Neural-Machine-Translation-with-Attention | [notebook / data / paper] |
| 08. CNN-for-Text-Classification | [notebook / data / paper] |
| 09. Recursive-NN-for-Sentiment-Classification | [notebook / data / paper] |
| 10. Dynamic-Memory-Network-for-Question-Answering | [notebook / data / paper] |

## Requirements

- Python 3.5
- Pytorch 0.2+
- nltk 3.2.2
- gensim 2.2.0
- sklearn_crfsuite

## Getting started

`git clone https://github.com/DSKSD/cs-224n-Pytorch.git`

### prepare dataset

````
cd script
chmod u+x prepare_dataset.sh
./prepare_dataset.sh
````

### docker env
ubuntu 16.04 python 3.5.2 with various of ML/DL packages including tensorflow, sklearn, pytorch

`docker pull dsksd/deepstudy:0.2`

````
pip3 install docker-compose
cd script
docker-compose up -d
````

### cloud setting

`not yet`

## References

* practical-pytorch
* DeepLearningForNLPInPytorch
* pytorch-tutorial
* pytorch-examples

## Author

Sungdong Kim / @DSKSD