Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ducha-aiki/lsuv-pytorch
Simple implementation of the LSUV initialization in PyTorch
https://github.com/ducha-aiki/lsuv-pytorch
cnn convolutional-networks convolutional-neural-networks deeplearning initialization lsuv lsuv-initialization pytorch
Last synced: 8 days ago
JSON representation
Simple implementation of the LSUV initialization in PyTorch
- Host: GitHub
- URL: https://github.com/ducha-aiki/lsuv-pytorch
- Owner: ducha-aiki
- License: bsd-2-clause
- Created: 2017-07-19T12:38:55.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2024-01-16T11:56:24.000Z (10 months ago)
- Last Synced: 2024-11-02T02:33:04.324Z (15 days ago)
- Topics: cnn, convolutional-networks, convolutional-neural-networks, deeplearning, initialization, lsuv, lsuv-initialization, pytorch
- Language: Python
- Size: 8.92 MB
- Stars: 58
- Watchers: 5
- Forks: 8
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Layer-sequential unit-variance (LSUV) initialization for PyTorch
# NEW repo: [ducha-aiki/lsuv](https://github.com/ducha-aiki/lsuv)
```
pip install lsuv
```This is sample code for LSUV and initializations, implemented in python script within PyTorch framework.
Usage:
from LSUV import LSUVinit
...
model = LSUVinit(model,data)See detailed example in [example.py](example.py)
LSUV initialization is described in:
Mishkin, D. and Matas, J.,(2015). All you need is a good init. ICLR 2016 [arXiv:1511.06422](http://arxiv.org/abs/1511.06422).
Original Caffe implementation [https://github.com/ducha-aiki/LSUVinit](https://github.com/ducha-aiki/LSUVinit)
Torch re-implementation [https://github.com/yobibyte/torch-lsuv](https://github.com/yobibyte/torch-lsuv)
Keras implementation: [https://github.com/ducha-aiki/LSUV-keras](https://github.com/ducha-aiki/LSUV-keras)
**New!** Thinc re-implementation [LSUV-thinc](https://github.com/explosion/thinc/blob/e653dd3dfe91f8572e2001c8943dbd9b9401768b/thinc/neural/_lsuv.py)