Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/duncanwp/ClimateBench
https://github.com/duncanwp/ClimateBench
Last synced: 11 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/duncanwp/ClimateBench
- Owner: duncanwp
- License: mit
- Created: 2021-08-06T16:18:21.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-04-23T00:24:55.000Z (7 months ago)
- Last Synced: 2024-08-01T06:20:55.503Z (3 months ago)
- Language: Jupyter Notebook
- Size: 33.5 MB
- Stars: 81
- Watchers: 4
- Forks: 24
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-WeatherAI - ClimateBench
README
# ClimateBench
ClimateBench is a benchmark dataset for climate model emulation inspired by [WeatherBench](https://github.com/pangeo-data/WeatherBench). It consists of NorESM2 simulation outputs with associated forcing data processed in to a consistent format from a variety of experiments performed for CMIP6. Multiple ensemble members are included where available.
The processed training, validation and test data can be obtained from Zenodo: [10.5281/zenodo.5196512](https://doi.org/10.5281/zenodo.5196512).
The ClimateBench Paper was published in [AGU JAMES](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002954) on September 2022.
## Leaderboard
The spatial, global and total NRMSE of the different baseline emulators for the years 2080-2100 against the ClimateBench task of estimating key climate variables under future scenario SSP245. The models are ranked in order of the mean of the total NRMSE across all tasks.
| | ('tas', 'Spatial') | ('tas', 'Global') | ('tas', 'Total') | ('diurnal_temperature_range', 'Spatial') | ('diurnal_temperature_range', 'Global') | ('diurnal_temperature_range', 'Total') | ('pr', 'Spatial') | ('pr', 'Global') | ('pr', 'Total') | ('pr90', 'Spatial') | ('pr90', 'Global') | ('pr90', 'Total') |
|------------------|----------------------|---------------------|--------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|---------------------|--------------------|-------------------|-----------------------|----------------------|---------------------|
| Neural Network | 0.107294 | 0.0440271 | 0.327429 | 9.91735 | 1.37219 | 16.7783 | 2.1281 | 0.2093 | 3.1746 | 2.61022 | 0.345709 | 4.33876 |
| Gaussian Process | 0.109106 | 0.0738238 | 0.478225 | 9.20713 | 2.67495 | 22.5819 | 2.34092 | 0.341453 | 4.04818 | 2.5559 | 0.429154 | 4.70167 |
| Random Forest | 0.107574 | 0.0584057 | 0.399602 | 9.19503 | 2.65241 | 22.4571 | 2.52431 | 0.502126 | 5.03494 | 2.68209 | 0.543375 | 5.39896 |## Installation
The example scripts provided here require [ESEm](https://github.com/duncanwp/ESEm) and a few other packages. It is recommended to first create a conda environment with iris or xarray::$ conda install -c conda-forge iris
Then pip install the additional requirements:
$ pip install esem[gpflow,keras,scikit-learn] eofs