Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dunnkers/fseval
Benchmarking framework for Feature Selection and Feature Ranking algorithms 🚀
https://github.com/dunnkers/fseval
automl benchmarking benchmarking-framework benchmarks feature-rankers feature-ranking feature-selection hydra machine-learning python scikit-learn wandb
Last synced: 22 days ago
JSON representation
Benchmarking framework for Feature Selection and Feature Ranking algorithms 🚀
- Host: GitHub
- URL: https://github.com/dunnkers/fseval
- Owner: dunnkers
- License: mit
- Created: 2020-06-21T23:46:25.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-04-12T09:57:56.000Z (over 1 year ago)
- Last Synced: 2024-10-01T15:44:18.076Z (about 1 month ago)
- Topics: automl, benchmarking, benchmarking-framework, benchmarks, feature-rankers, feature-ranking, feature-selection, hydra, machine-learning, python, scikit-learn, wandb
- Language: Python
- Homepage: https://dunnkers.com/fseval
- Size: 23.6 MB
- Stars: 18
- Watchers: 3
- Forks: 6
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
- Citation: CITATION.cff
Awesome Lists containing this project
README
# fseval
[![build status](https://github.com/dunnkers/fseval/actions/workflows/python-app.yml/badge.svg)](https://github.com/dunnkers/fseval/actions/workflows/python-app.yml)
[![pypi badge](https://img.shields.io/pypi/v/fseval.svg?maxAge=3600)](https://pypi.org/project/fseval/)
[![Black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Downloads](https://pepy.tech/badge/fseval/month)](https://pepy.tech/project/fseval) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/fseval)
[![codecov](https://codecov.io/gh/dunnkers/fseval/branch/master/graph/badge.svg?token=R5ZXH8UPCI)](https://codecov.io/gh/dunnkers/fseval)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/dunnkers/fseval.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/dunnkers/fseval/context:python) ![PyPI - License](https://img.shields.io/pypi/l/fseval)
[![DOI](https://zenodo.org/badge/274001213.svg)](https://zenodo.org/badge/latestdoi/274001213)
[![Open in Remote - Containers](https://img.shields.io/static/v1?label=Remote%20-%20Containers&message=Open&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/dunnkers/fseval)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.04611/status.svg)](https://doi.org/10.21105/joss.04611)Benchmarking framework for Feature Selection and Feature Ranking algorithms 🚀
## Demo
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Bsuxxuw0-mEsYRSnNbmvD_wNUAkOPiQa?usp=sharing)## Install
1. Installation through [PyPi](https://pypi.org/project/fseval/)
⭐️ RECOMMENDED OPTION
```shell
pip install fseval
```2. Installation from source
```shell
git clone https://github.com/dunnkers/fseval.git
cd fseval
pip install -r requirements.txt
pip install .
```You can now import fseval `import fseval` in your Python code, or use the `fseval` command in your terminal. For an example, run `fseval --help`. For more information, see the documentation link below ⌄.
## Documentation
[![docs preview](./website/static/img/docs-preview.png)](https://dunnkers.com/fseval)
See the [documentation](https://dunnkers.com/fseval).
## About
Built at the University of Groningen and published in **The Journal of Open Source Software** (JOSS):
- https://joss.theoj.org/papers/10.21105/joss.04611Project has some early roots in another project, which is a feature selection algorithm called FeatBoost (see full citation below).
A. Alsahaf, N. Petkov, V. Shenoy, G. Azzopardi, "A framework for feature selection through boosting", Expert Systems with Applications,
Volume 187, 2022, 115895, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2021.115895.
The open source Python code of FeatBoost is available in https://github.com/amjams/FeatBoost.
---
2023 — Jeroen Overschie