Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/dwtkns/gdal-cheat-sheet
Cheat sheet for GDAL/OGR command-line tools
https://github.com/dwtkns/gdal-cheat-sheet
Last synced: 9 days ago
JSON representation
Cheat sheet for GDAL/OGR command-line tools
- Host: GitHub
- URL: https://github.com/dwtkns/gdal-cheat-sheet
- Owner: dwtkns
- Created: 2013-01-26T23:48:56.000Z (almost 12 years ago)
- Default Branch: master
- Last Pushed: 2024-06-13T09:13:32.000Z (6 months ago)
- Last Synced: 2024-10-16T09:04:36.340Z (about 2 months ago)
- Homepage:
- Size: 50.8 KB
- Stars: 1,191
- Watchers: 72
- Forks: 266
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-starred - dwtkns/gdal-cheat-sheet - Cheat sheet for GDAL/OGR command-line tools (others)
README
Cheat sheet for GDAL/OGR command-line geodata tools
Vector operations
---__Get vector information__
ogrinfo -so input.shp layer-name
Or, for all layers
ogrinfo -al -so input.shp
__Print vector extent__
ogrinfo input.shp layer-name | grep Extent
__List vector drivers__ogr2ogr --formats
__Convert between vector formats__
ogr2ogr -f "GeoJSON" output.json input.shp
__Print count of features with attributes matching a given pattern__
ogrinfo input.shp layer-name | grep "Search Pattern" | sort | uniq -c
__Read from a zip file__
This assumes that archive.zip is in the current directory. This example just extracts the file, but any ogr2ogr operation should work. It's also possible to write to existing zip files.
ogr2ogr -f 'GeoJSON' dest.geojson /vsizip/archive.zip/zipped_dir/in.geojson
__Clip vectors by bounding box__
ogr2ogr -f "ESRI Shapefile" output.shp input.shp -clipsrc
__Clip one vector by another__
ogr2ogr -clipsrc clipping_polygon.shp output.shp input.shp
__Reproject vector:__
ogr2ogr output.shp -t_srs "EPSG:4326" input.shp
__Add an index to a shapefile__
Add an index on an attribute:
ogrinfo example.shp -sql "CREATE INDEX ON example USING fieldname"
Add a spatial index:
ogrinfo example.shp -sql "CREATE SPATIAL INDEX ON example"
__Merge features in a vector file by attribute ("dissolve")__
ogr2ogr -f "ESRI Shapefile" dissolved.shp input.shp -dialect sqlite -sql "select ST_union(Geometry),common_attribute from input GROUP BY common_attribute"
__Merge features ("dissolve") using a buffer to avoid slivers__ogr2ogr -f "ESRI Shapefile" dissolved.shp input.shp -dialect sqlite \
-sql "select ST_union(ST_buffer(Geometry,0.001)),common_attribute from input GROUP BY common_attribute"__Merge vector files:__
ogr2ogr merged.shp input1.shp
ogr2ogr -update -append merged.shp input2.shp -nln merged__Extract from a vector file based on query__
To extract features with STATENAME 'New York','New Hampshire', etc. from states.shp
ogr2ogr -where 'STATENAME like "New%"' states_subset.shp states.shp
To extract type 'pond' from water.shp
ogr2ogr -where "type = pond" ponds.shp water.shp
__Subset & filter all shapefiles in a directory__
Assumes that filename and name of layer of interest are the same...
basename -s.shp *.shp | xargs -n1 -I % ogr2ogr %-subset.shp %.shp -sql "SELECT field-one, field-two FROM '%' WHERE field-one='value-of-interest'"
__Extract data from a PostGis database to a GeoJSON file__
ogr2ogr -f "GeoJSON" file.geojson PG:"host=localhost dbname=database user=user password=password" \
-sql "SELECT * from table_name"__Extract data from an ESRI REST API__
Services that use ESRI maps are sometimes powered by a REST server that can provide data in OGR can consume. Finding the correct end point can be tricky and may take some false starts.
ogr2ogr -f GeoJSON output.geojson "http:/example.com/arcgis/rest/services/SERVICE/LAYER/MapServer/0/query?f=json&returnGeometry=true&etc=..." OGRGeoJSON
__Get the difference between two vector files__
Given two files that both have an id field, this will produce a vector file with the part of `file1.shp` that doesn't intersect with `file2.shp`:
ogr2ogr diff.shp file1.shp -dialect sqlite \
-sql "SELECT ST_Difference(a.Geometry, b.Geometry) AS Geometry, a.id \
FROM file1 a LEFT JOIN 'file2.shp'.file2 b USING (id) WHERE a.Geometry != b.Geometry"This assumes that `file2.shp` and `file2.shp` are both in the current directory.
__Spatial join:__
A spatial join transfers properties from one vector layer to another based on a [spatial relationship](http://postgis.net/docs/manual-2.0/reference.html#Spatial_Relationships_Measurements) between the features. Fields from the join layer can be [aggregated](https://www.sqlite.org/lang_aggfunc.html) in the output.
Given a set of points (trees.shp) and a set of polygons (parks.shp) in the same directory, create a polygon layer with the geometries from parks.shp and summaries of some columns in trees.shp:
ogr2ogr -f 'ESRI Shapefile' output.shp parks.shp -dialect sqlite \
-sql "SELECT p.Geometry, p.id id, SUM(t.field1) field1_sum, AVG(t.field2) field2_avg
FROM parks p, 'trees.shp'.trees t WHERE ST_Contains(p.Geometry, t.Geometry) GROUP BY p.id"Note that features that from parks.shp that don't overlap with trees.shp won't be in the new file.
Raster operations
---
__Get raster information__gdalinfo input.tif
__List raster drivers__
gdal_translate --formats
__Force creation of world file (requires libgeotiff)__listgeo -tfw mappy.tif
__Report PROJ.4 projection info, including bounding box (requires libgeotiff)__listgeo -proj4 mappy.tif
__Convert between raster formats__
gdal_translate -of "GTiff" input.grd output.tif
__Convert 16-bit bands (Int16 or UInt16) to Byte type__
(Useful for Landsat 8 imagery...)gdal_translate -of "GTiff" -co "COMPRESS=LZW" -scale 0 65535 0 255 -ot Byte input_uint16.tif output_byte.tif
You can change '0' and '65535' to your image's actual min/max values to preserve more color variation or to apply the scaling to other band types - find that number with:
gdalinfo -mm input.tif | grep Min/Max
__Convert a directory of raster files of the same format to another raster format__basename -s.img *.img | xargs -n1 -I % gdal_translate -of "GTiff" %.img %.tif
__Reproject raster:__
gdalwarp -t_srs "EPSG:102003" input.tif output.tif
Be sure to add _-r bilinear_ if reprojecting elevation data to prevent funky banding artifacts.__Georeference an unprojected image with known bounding coordinates:__
gdal_translate -of GTiff -a_ullr \
-a_srs EPSG:4269 input.png output.tif__Clip raster by bounding box__
gdalwarp -te input.tif clipped_output.tif
__Clip raster to SHP / NoData for pixels beyond polygon boundary__gdalwarp -dstnodata -cutline input_polygon.shp input.tif clipped_output.tif
__Crop raster dimensions to vector bounding box__
gdalwarp -cutline cropper.shp -crop_to_cutline input.tif cropped_output.tif__Merge rasters__
gdal_merge.py -o merged.tif input1.tif input2.tif
Alternatively,
gdalwarp input1.tif input2.tif merged.tif
Or, to preserve nodata values:gdalwarp input1.tif input2.tif merged.tif -srcnodata -dstnodata
__Stack grayscale bands into a georeferenced RGB__
Where LC81690372014137LGN00 is a Landsat 8 ID and B4, B3 and B2 correspond to R,G,B bands respectively:
gdal_merge.py -co "PHOTOMETRIC=RGB" -separate LC81690372014137LGN00_B{4,3,2}.tif -o LC81690372014137LGN00_rgb.tif
__Fix an RGB TIF whose bands don't know they're RGB__
gdal_merge.py -co "PHOTOMETRIC=RGB" input.tif -o output_rgb.tif
__Export a raster for Google Earth__
gdal_translate -of KMLSUPEROVERLAY input.tif output.kmz -co FORMAT=JPEG
__Raster calculation (map algebra)__Average two rasters:
gdal_calc.py -A input1.tif -B input2.tif --outfile=output.tif --calc="(A+B)/2"
Add two rasters:
gdal_calc.py -A input1.tif -B input2.tif --outfile=output.tif --calc="A+B"
etc.
__Create a hillshade from a DEM__
gdaldem hillshade -of PNG input.tif hillshade.png
Change light direction:
gdaldem hillshade -of PNG -az 135 input.tif hillshade_az135.png
Use correct vertical scaling in meters if input is projected in degrees
gdaldem hillshade -s 111120 -of PNG input_WGS1984.tif hillshade.png__Apply color ramp to a DEM__
First, create a color-ramp.txt file:
_(Height, Red, Green, Blue)_0 110 220 110
900 240 250 160
1300 230 220 170
1900 220 220 220
2500 250 250 250Then apply those colors to a DEM:
gdaldem color-relief input.tif color_ramp.txt color-relief.tif
__Create slope-shading from a DEM__
First, make a slope raster from DEM:gdaldem slope input.tif slope.tif
Second, create a color-slope.txt file:
_(Slope angle, Red, Green, Blue)_0 255 255 255
90 0 0 0Finally, color the slope raster based on angles in color-slope.txt:
gdaldem color-relief slope.tif color-slope.txt slopeshade.tif
__Resample (resize) raster__
gdalwarp -ts -r cubic dem.tif resampled_dem.tif
Entering 0 for either width or height guesses based on current dimensions.
Alternatively,
gdal_translate -outsize 10% 10% -r cubic dem.tif resampled_dem.tifFor both of these, `-r cubic` specifies cubic interpolation: when resampling continuous data (like a DEM), the default nearest neighbor interpolation can result in "stair step" artifacts.
__Burn vector into raster__
gdal_rasterize -b 1 -i -burn -32678 -l layername input.shp input.tif
__Extract polygons from raster__
gdal_polygonize.py input.tif -f "GeoJSON" output.json
__Create contours from DEM__
gdal_contour -a elev -i 50 input_dem.tif output_contours.shp
__Get values for a specific location in a raster__
gdallocationinfo -xml -wgs84 input.tif
__Convert GRIB band to .tif__
Assumes data for entire globe in WGS84. Be sure to specify band, or you may end up with a nonsense RGB image composed of the first three.gdal_translate input.grib -a_ullr -180 -90 180 90 -a_srs EPSG:4326 -b 1 output_band1.tif
Other
---
__Convert KML points to CSV (simple)__ogr2ogr -f CSV output.csv input.kmz -lco GEOMETRY=AS_XY
__Convert KML to CSV (WKT)__
First list layers in the KML fileogrinfo -so input.kml
Convert the desired KML layer to CSV
ogr2ogr -f CSV output.csv input.kml -sql "select *,OGR_GEOM_WKT from some_kml_layer"
__CSV points to SHP__
Given `input.csv`:
lon,lat,value
-81,31,13
-80,32,14
-81,33,15Create a shapefile, using Spatialite functions to generate the point:
ogr2ogr output.shp input.csv -dialect sqlite \
-sql "SELECT MakePoint(CAST(lon as REAL), CAST(lat as REAL), 4326) Geometry, * FROM input"Note the 4326, which refers to a spatial reference (in this case [`EPSG:4326`](http://epsg.io/4326)). Use the correct code for your data.
__MODIS operations__
First, download relevant .hdf tiles from the MODIS ftp site: ; use the [MODIS sinusoidal grid](http://www.geohealth.ou.edu/modis_v5/modis.shtml) for reference.
List MODIS Subdatasets in a given HDF (conf. the [MODIS products table](https://lpdaac.usgs.gov/products/modis_products_table/))
gdalinfo longFileName.hdf | grep SUBDATASET
Make TIFs from each file in list; replace 'MOD12Q1:Land_Cover_Type_1' with desired Subdataset name
mkdir output
find . '*.hdf' -exec gdalwarp -of GTiff 'HDF4_EOS:EOS_GRID:"{}":MOD12Q1:Land_Cover_Type_1' output/{}.tif \;Merge all .tifs in output directory into single file
gdal_merge.py -o output/Merged_Landcover.tif output/*.tif
__BASH functions__
_Size Functions_
This size function echos the pixel dimensions of a given file in the format expected by gdalwarp.function gdal_size() {
SIZE=$(gdalinfo $1 |\
grep 'Size is ' |\
cut -d\ -f3-4 |\
sed 's/,//g')
echo -n "$SIZE"
}This can be used to easily resample one raster to the dimensions of another:
gdalwarp -ts $(gdal_size bigraster.tif) -r cubicspline smallraster.tif resampled_smallraster.tif
_Extent Functions_
These extent functions echo the extent of the given file in the order/format expected by gdal_translate -projwin.
(Originally from [Linfiniti](http://linfiniti.com/2009/09/clipping-rasters-with-gdal-using-polygons/)).function gdal_extent() {
if [ -z "$1" ]; then
echo "Missing arguments. Syntax:"
echo " gdal_extent "
return
fi
EXTENT=$(gdalinfo $1 |\
grep "Upper Left\|Lower Right" |\
sed "s/Upper Left //g;s/Lower Right //g;s/).*//g" |\
tr "\n" " " |\
sed 's/ *$//g' |\
tr -d "[(,]")
echo -n "$EXTENT"
}function ogr_extent() {
if [ -z "$1" ]; then
echo "Missing arguments. Syntax:"
echo " ogr_extent "
return
fi
EXTENT=$(ogrinfo -al -so $1 |\
grep Extent |\
sed 's/Extent: //g' |\
sed 's/(//g' |\
sed 's/)//g' |\
sed 's/ - /, /g')
EXTENT=`echo $EXTENT | awk -F ',' '{print $1 " " $4 " " $3 " " $2}'`
echo -n "$EXTENT"
}function ogr_layer_extent() {
if [ -z "$2" ]; then
echo "Missing arguments. Syntax:"
echo " ogr_extent "
return
fi
EXTENT=$(ogrinfo -so $1 $2 |\
grep Extent |\
sed 's/Extent: //g' |\
sed 's/(//g' |\
sed 's/)//g' |\
sed 's/ - /, /g')
EXTENT=`echo $EXTENT | awk -F ',' '{print $1 " " $4 " " $3 " " $2}'`
echo -n "$EXTENT"
}Extents can be passed directly into a gdal_translate command like so:
gdal_translate -projwin $(ogr_extent boundingbox.shp) input.tif clipped_output.tif
or
gdal_translate -projwin $(gdal_extent target_crop.tif) input.tif clipped_output.tifThis can be a useful way to quickly crop one raster to the same extent as another. Add these to your ~/.bash_profile file for easy terminal access.
Sources
---