Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/e3nn/e3nn-jax
jax library for E3 Equivariant Neural Networks
https://github.com/e3nn/e3nn-jax
deep-learning jax lie-groups
Last synced: about 2 months ago
JSON representation
jax library for E3 Equivariant Neural Networks
- Host: GitHub
- URL: https://github.com/e3nn/e3nn-jax
- Owner: e3nn
- License: apache-2.0
- Created: 2021-06-08T13:21:51.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-09-28T21:53:27.000Z (3 months ago)
- Last Synced: 2024-10-29T08:03:58.926Z (2 months ago)
- Topics: deep-learning, jax, lie-groups
- Language: Python
- Homepage:
- Size: 57.7 MB
- Stars: 180
- Watchers: 12
- Forks: 18
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- License: LICENSE
Awesome Lists containing this project
- best-of-atomistic-machine-learning - GitHub - 4% open · ⏱️ 15.12.2024): (Representation Learning)
README
# e3nn-jax
### [Documentation](https://e3nn-jax.readthedocs.io/en/latest) [![Documentation Status](https://readthedocs.org/projects/e3nn-jax/badge/?version=latest)](https://e3nn-jax.readthedocs.io/en/latest/?badge=latest)```python
import e3nn_jax as e3nn# Create a random array made of a scalar (0e) and a vector (1o)
array = e3nn.normal("0e + 1o", jax.random.PRNGKey(0))print(array)
# 1x0e+1x1o [ 1.8160863 -0.75488514 0.33988908 -0.53483534]# Compute the norms
norms = e3nn.norm(array)
print(norms)
# 1x0e+1x0e [1.8160863 0.98560894]# Compute the norm of the full array
total_norm = e3nn.norm(array, per_irrep=False)
print(total_norm)
# 1x0e [2.0662997]# Compute the tensor product of the array with itself
tp = e3nn.tensor_square(array)
print(tp)
# 2x0e+1x1o+1x2e
# [ 1.9041989 0.25082085 -1.3709364 0.61726785 -0.97130704 0.40373924
# -0.25657722 -0.18037902 -0.18178469 -0.14190137]
```### :rocket: 44% faster than pytorch*
*Speed comparison done with a full model (MACE) during training (revMD-17) on a GPU (NVIDIA RTX A5000)
Please always check the [CHANGELOG](CHANGELOG.md) for breaking changes.
## Installation
To install the latest released version:
```bash
pip install --upgrade e3nn-jax
```To install the latest GitHub version:
```bash
pip install git+https://github.com/e3nn/e3nn-jax.git
```## Need Help?
Ask a question in the [discussions tab](https://github.com/e3nn/e3nn-jax/discussions).## What is different from the PyTorch version?
The main difference is the presence of the class [`IrrepsArray`](https://e3nn-jax.readthedocs.io/en/latest/api/irreps_array.html).
`IrrepsArray` contains the irreps (`Irreps`) along with the data array.## Citing
- Euclidean Neural Networks
```
@misc{thomas2018tensorfieldnetworksrotation,
title={Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds},
author={Nathaniel Thomas and Tess Smidt and Steven Kearnes and Lusann Yang and Li Li and Kai Kohlhoff and Patrick Riley},
year={2018},
eprint={1802.08219},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1802.08219},
}@misc{weiler20183dsteerablecnnslearning,
title={3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data},
author={Maurice Weiler and Mario Geiger and Max Welling and Wouter Boomsma and Taco Cohen},
year={2018},
eprint={1807.02547},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/1807.02547},
}@misc{kondor2018clebschgordannetsfullyfourier,
title={Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network},
author={Risi Kondor and Zhen Lin and Shubhendu Trivedi},
year={2018},
eprint={1806.09231},
archivePrefix={arXiv},
primaryClass={stat.ML},
url={https://arxiv.org/abs/1806.09231},
}
```
- e3nn
```
@misc{e3nn_paper,
doi = {10.48550/ARXIV.2207.09453},
url = {https://arxiv.org/abs/2207.09453},
author = {Geiger, Mario and Smidt, Tess},
keywords = {Machine Learning (cs.LG), Artificial Intelligence (cs.AI), Neural and Evolutionary Computing (cs.NE), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {e3nn: Euclidean Neural Networks},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}@software{e3nn,
author = {Mario Geiger and
Tess Smidt and
Alby M. and
Benjamin Kurt Miller and
Wouter Boomsma and
Bradley Dice and
Kostiantyn Lapchevskyi and
Maurice Weiler and
Michał Tyszkiewicz and
Simon Batzner and
Dylan Madisetti and
Martin Uhrin and
Jes Frellsen and
Nuri Jung and
Sophia Sanborn and
Mingjian Wen and
Josh Rackers and
Marcel Rød and
Michael Bailey},
title = {Euclidean neural networks: e3nn},
month = apr,
year = 2022,
publisher = {Zenodo},
version = {0.5.0},
doi = {10.5281/zenodo.6459381},
url = {https://doi.org/10.5281/zenodo.6459381}
}
```