Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/eagerai/kerastuner

R interface to Keras Tuner
https://github.com/eagerai/kerastuner

hyperparameter-tuning hypertuning keras keras-tuner r tensorflow trial

Last synced: 2 months ago
JSON representation

R interface to Keras Tuner

Awesome Lists containing this project

README

        

## R interface to Keras Tuner

The kerastuneR package provides R wrappers to [Keras Tuner](https://keras-team.github.io/keras-tuner/).

Keras Tuner is a hypertuning framework made for humans.
It aims at making the life of AI practitioners, hypertuner algorithm creators and model designers as simple as possible by providing them with a clean and easy to use API for hypertuning. Keras Tuner makes moving from a base model to a hypertuned one quick and easy by only requiring you to change a few lines of code.

Keras Tuner

[![Actions Status](https://github.com/eagerai/kerastuneR/workflows/KT_stable/badge.svg)](https://github.com/eagerai/kerastuneR)
[![CRAN](https://www.r-pkg.org/badges/version/kerastuneR?color=green)](https://cran.r-project.org/package=kerastuneR)


[![Last month downloads](http://cranlogs.r-pkg.org/badges/last-month/kerastuneR?color=green)](https://cran.r-project.org/package=kerastuneR)


[![Last commit](https://img.shields.io/github/last-commit/eagerai/kerastuneR.svg)](https://github.com/eagerai/kerastuneR/commits/master)

A hyperparameter tuner for [Keras](https://keras.io/), specifically for ```tf$keras``` with *TensorFlow 2.0*.

Full documentation and tutorials available on the [Keras Tuner website](https://eagerai.github.io/kerastuneR/).

## Installation

Requirements:

- Python 3.9
- TensorFlow 2.0.x

```kerastuneR``` can be installed from CRAN:

```
install.packages('kerastuneR')
```

The dev version:

```
devtools::install_github('eagerai/kerastuneR')
```

Later, you need to install the python module kerastuner:

```
kerastuneR::install_kerastuner()
```

## Usage: the basics

Here's how to perform hyperparameter tuning for a single-layer dense neural network using random search.

First, we define a model-building function. It takes an argument ```hp``` from which you can sample hyperparameters, such as ```hp$Int('units', min_value = 32, max_value = 512, step = 32)``` (an integer from a certain range).

Sample data:

```
library(magrittr)
x_data <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()

x_data2 <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data2 <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()
```

This function returns a compiled model.

```
library(keras3)
library(tensorflow)
library(kerastuneR)

build_model = function(hp) {

model = keras_model_sequential()
model %>% layer_dense(units = hp$Int('units',
min_value = 32,
max_value = 512,
step= 32),input_shape = ncol(x_data),
activation = 'relu') %>%
layer_dense(units = 1, activation = 'softmax') %>%
compile(
optimizer = tf$keras$optimizers$Adam(
hp$Choice('learning_rate',
values=c(1e-2, 1e-3, 1e-4))),
loss = 'binary_crossentropy',
metrics = 'accuracy')
return(model)
}
```

Next, instantiate a tuner. You should specify the model-building function, the name of the objective to optimize (whether to minimize or maximize is automatically inferred for built-in metrics), the total number of trials ```(max_trials)``` to test, and the number of models that should be built and fit for each trial ```(executions_per_trial)```.

Available tuners are ```RandomSearch``` and ```Hyperband```.

> Note: the purpose of having multiple executions per trial is to reduce results variance and therefore be able to more accurately assess the performance of a model. If you want to get results faster, you could set executions_per_trial=1 (single round of training for each model configuration).

```
tuner = RandomSearch(
build_model,
objective = 'val_accuracy',
max_trials = 5,
executions_per_trial = 3,
directory = 'my_dir',
project_name = 'helloworld')
```

You can print a summary of the search space:

```
tuner %>% search_summary()
```

Then, start the search for the best hyperparameter configuration. The call to search has the same signature as ```model %>% fit()```. But here instead of ```fit()``` we call ```fit_tuner()```.

```
tuner %>% fit_tuner(x_data,y_data,
epochs = 5,
validation_data = list(x_data2,y_data2))
```

### Plot results

There is a function ```plot_tuner``` which allows user to plot the search results. For this purpose, we used the parallel coordinates plot from ```plotly```. This function allows to get a data.frame of the results, as well.

```
result = kerastuneR::plot_tuner(tuner)
# the list will show the plot and the data.frame of tuning results
result
```

Keras Tuner plot

### Plot Keras model

First one should extract the list of tuned models and then using function ```plot_keras_model``` to plot the model architecture.

```
best_5_models = tuner %>% get_best_models(5)
best_5_models[[1]] %>% plot_keras_model()
```


Keras model

## You can easily restrict the search space to just a few parameters

If you have an existing hypermodel, and you want to search over only a few parameters (such as the learning rate), you can do so by passing a ```hyperparameters``` argument to the tuner constructor, as well as ```tune_new_entries=FALSE``` to specify that parameters that you didn't list in ```hyperparameters``` should not be tuned. For these parameters, the default value gets used.

```
library(keras)
library(kerastuneR)
library(magrittr)

mnist_data = dataset_fashion_mnist()
c(mnist_train, mnist_test) %<-% mnist_data
rm(mnist_data)

mnist_train$x = tf$dtypes$cast(mnist_train$x, 'float32') / 255.
mnist_test$x = tf$dtypes$cast(mnist_test$x, 'float32') / 255.

mnist_train$x = keras::k_reshape(mnist_train$x,shape = c(6e4,28,28))
mnist_test$x = keras::k_reshape(mnist_test$x,shape = c(1e4,28,28))

hp = HyperParameters()
hp$Choice('learning_rate', c(1e-1, 1e-3))
hp$Int('num_layers', 2L, 20L)

mnist_model = function(hp) {

model = keras_model_sequential() %>%
layer_flatten(input_shape = c(28,28))
for (i in 1:(hp$get('num_layers')) ) {
model %>% layer_dense(32, activation='relu') %>%
layer_dense(units = 10, activation='softmax')
} %>%
compile(
optimizer = tf$keras$optimizers$Adam(hp$get('learning_rate')),
loss = 'sparse_categorical_crossentropy',
metrics = 'accuracy')
return(model)

}

tuner = RandomSearch(
hypermodel = mnist_model,
max_trials = 5,
hyperparameters = hp,
tune_new_entries = T,
objective = 'val_accuracy',
directory = 'dir_1',
project_name = 'mnist_space')

tuner %>% fit_tuner(x = mnist_train$x,
y = mnist_train$y,
epochs = 5,
validation_data = list(mnist_test$x, mnist_test$y))

```

## You can use a HyperModel subclass instead of a model-building function

This makes it easy to share and reuse hypermodels.

A ```HyperModel``` subclass only needs to implement a ```build(self, hp)``` method.

```
library(keras)
library(tensorflow)
library(magrittr)
library(kerastuneR)

x_data <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()

x_data2 <- matrix(data = runif(500,0,1),nrow = 50,ncol = 5)
y_data2 <- ifelse(runif(50,0,1) > 0.6, 1L,0L) %>% as.matrix()

HyperModel <- reticulate::PyClass(
'HyperModel',
inherit = kerastuneR::HyperModel_class(),
list(

`__init__` = function(self, num_classes) {

self$num_classes = num_classes
NULL
},
build = function(self,hp) {
model = keras_model_sequential()
model %>% layer_dense(units = hp$Int('units',
min_value = 32,
max_value = 512,
step = 32),
input_shape = ncol(x_data),
activation = 'relu') %>%
layer_dense(as.integer(self$num_classes), activation = 'softmax') %>%
compile(
optimizer = tf$keras$optimizers$Adam(
hp$Choice('learning_rate',
values = c(1e-2, 1e-3, 1e-4))),
loss = 'sparse_categorical_crossentropy',
metrics = 'accuracy')
}
)
)

hypermodel = HyperModel(num_classes = 10)

tuner = RandomSearch(hypermodel = hypermodel,
objective = 'val_accuracy',
max_trials = 2,
executions_per_trial = 1,
directory = 'my_dir5',
project_name = 'helloworld')

```

More tutorials can be found on https://eagerai.github.io/kerastuneR/